NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5
These NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 Questions and Answers are prepared by our highly skilled subject experts. https://mcq-questions.com/ncert-solutions-for-class-12-maths-chapter-4-ex-4-5/
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Exercise 4.5

Ex 4.5 Class 12 NCERT Solutions Question 1.
 \(\left[\begin{array}{ll}
 1 & 2 \\
 3 & 4
 \end{array}\right]\)
 Solution:
 Let A = \(\left[\begin{array}{ll}
 1 & 2 \\
 3 & 4
 \end{array}\right]\)
 Adj A = \(\begin{bmatrix} 4 & -3 \\ -2 & 1 \end{bmatrix}\)
Exercise 4.5 Class 12 NCERT Solutions Question 2.
 \(\left[ \begin{matrix} 1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1 \end{matrix} \right]\)
 Solution:
 
Exercise 4.5 Class 12 Maths Question 3.
 \(\begin{bmatrix} 2 & 3 \\ -4 & 6 \end{bmatrix}\)
 Solution:
 

4.5 Class 12 NCERT Solutions Question 4.
 \(\left[ \begin{matrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{matrix} \right]\)
 Solution:
 |A| = \(\left|\begin{array}{ccc}
 1 & -1 & 2 \\
 3 & 0 & -2 \\
 1 & 0 & 3
 \end{array}\right|\)
 A11 = 0, A12 = – 11, A13 = 0,
 A21 = – 3, A22 = 1, A23 = 1,
 A31 = – 2, A32 = 8, A33 = 3
 
Ex 4.5 Class 12 Maths Ncert Solutions Question 5.
 \(\begin{bmatrix} 2 & -2 \\ 4 & 3 \end{bmatrix}\)
 Solution:
 
Exercise 4.5 Maths Class 12 Question 6.
 \(\begin{bmatrix} -1 & 5 \\ -3 & 2 \end{bmatrix}\)
 Solution:
 
Exercise 4.5 Class 12 Maths Solutions Question 7.
 \(\left[ \begin{matrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5 \end{matrix} \right]\)
 Solution:
 

Class 12 Maths Ch 4 Ex 4.5 Question 8.
 \(\left[ \begin{matrix} 1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \end{matrix} \right]\)
 Solution:
 
Ex4.5 Class 12 NCERT Solutions Question 9.
 \(\left[ \begin{matrix} 2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1 \end{matrix} \right]\)
 Solution:
 
Ex 4.5 Class 12 Maths NCERT Solutions Question 10.
 \(\left[ \begin{matrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{matrix} \right]\)
 Solution:
 

Class 12 Maths Chapter 4 Exercise 4.5 Solutions Question 11.
 \(\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & cos\alpha & sin\alpha \\ 0 & sin\alpha & -cos\alpha \end{matrix} \right] \)
 Solution:
 
Ncert Solutions For Class 12 Maths Chapter 4 Exercise 4.5 Question 12.
 Let \(A=\begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix},B=\begin{bmatrix} 6 & 8 \\ 7 & 9 \end{bmatrix}\), verify that (AB)-1 = B-1A-1
 Solution:
 
Class 12 Maths Chapter 4 Exercise 4.5 Question 13.
 If \(A=\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} \) show that A² – 5A + 7I = 0, hence find A-1.
 Solution:
 

Class 12 Maths Chapter 4 Exercise 4.5 Solution Question 14.
 For the matrix A = \(\begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} \) find file numbers a and b such that A² + aA + bI² = 0. Hence, find A-1.
 Solution:
 
Class 12 Maths Ex 4.5 Solutions Question 15.
 For the matrix \(A=\left[ \begin{matrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{matrix} \right] \) Show that A³ – 6A² + 5A + 11I3=0. Hence find A-1
 Solution:
 
 i.e., A³ – 6A² + 5A + 11I3 = 0 … (1)
 |A| = \(\left|\begin{array}{ccc}
 1 & 1 & 1 \\
 1 & 2 & -3 \\
 2 & -1 & 3
 \end{array}\right|\)
 = 1(3) – 1(9) + 1(- 5) = – 11 ≠ 0
 ∴ A-1 exists
 ⇒ (1) = A.A.A – 6A.A. + 5A = – 11 I
 ⇒ AA(AA-1 – 6A(AA-1) + 5AA-1 = – 11 IA-1 (Multiplying by A-1)
 ⇒ A²I – 6AI + 5I = – 11A-1
 ⇒ A² – 6A + 5I = – 11A-1
 ⇒ A-1 = \(\frac { -1 }{ 11 }\)[A² – 6A + 5I]
 

Class 12 Ex 4.5 NCERT Solutions Question 16.
 If \(A=\left[ \begin{matrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{matrix} \right] \) show that A³ – 6A² + 9A – 4I = 0 and hence, find A-1
 Solution:
 
Exercise 4.5 Class 12 Maths Ncert Solutions Question 17.
 Let A be a non-singular square matrix of order 3 x 3. Then | Adj A | is equal to:
 (a) | A |
 (b) | A |²
 (c) | A |³
 (d) 3 | A |
 Solution:
 
 Hence option (b) is correct.

Class 12 Maths Ex 4.5 NCERT Solutions Question 18.
 If A is an invertible matrix of order 2, then det. (A-1) is equal to:
 (a) det. (A)
 (b) \(\\ \frac { 1 }{ det.(A) } \)
 (c) 1
 (d) 0
 Solution:
 |A|≠0
 ⇒ A-1 exists ⇒ A-1 = I
 |AA-1| = |I| = I
 ⇒ |A||A-1| = I
 \(|{ A }^{ -1 }|=\frac { 1 }{ |A| } \)
 Hence option (b) is correct.
NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.5 Read More »




































