CBSE Class 12

NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2

These NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Questions and Answers are prepared by our highly skilled subject experts. https://mcq-questions.com/ncert-solutions-for-class-12-maths-chapter-3-ex-3-2/

NCERT Solutions for Class 12 Maths Chapter 3 Matrices Exercise 3.2

NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2

Ex 3.2 Class 12 Question 1.
Let
A = \(\left[\begin{array}{ll} 2 & 4 \\ 3 & 2 \end{array}\right]\)
B = \(\left[\begin{array}{ll} 1 & 3 \\ -2 & 5 \end{array}\right]\)
C = \(\left[\begin{array}{ll} -2 & 5 \\ 3 & 4 \end{array}\right]\)
F ind each of the following:
i. A + B
ii. A – B
iii. 3A – C
iv. AB
v. BA
Solution:
Ex 3.2 Class 12 NCERT Solutions

Class 12 Maths 3.2 Question 2.
Compute the following
i. \(\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right]+\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right]\)
ii. \(\left[\begin{array}{cc}
a^{2}+b^{2} & b^{2}+c^{2} \\
a^{2}+c^{2} & a^{2}+b^{2}
\end{array}\right]+\left[\begin{array}{cc}
2 a b & 2 b c \\
-2 a c & -2 a b
\end{array}\right]\)
iii. \(\left[\begin{array}{ccc}
-1 & 4 & -6 \\
8 & 5 & 16 \\
2 & 8 & 5
\end{array}\right]+\left[\begin{array}{ccc}
12 & 7 & 6 \\
8 & 0 & 5 \\
3 & 2 & 4
\end{array}\right]\)
iv. \(\left[\begin{array}{cc}
\cos ^{2} x & \sin ^{2} x \\
\sin ^{2} x & \cos ^{2} x
\end{array}\right]+\left[\begin{array}{cc}
\sin ^{2} x & \cos ^{2} x \\
\cos ^{2} x & \sin ^{2} x
\end{array}\right]\)
Solution:
Class 12 Maths 3.2 NCERT Solutions

NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2

Exercise 3.2 Class 12 Maths Question 3.
Compute the indicated products.
Exercise 3.2 Class 12 Maths
Solution:
Ex 3.2 NCERT Solutions

iii. Number of columns of first matrix = Number of rows of second matrix.
Class 12 Maths Ncert Solutions Chapter 3 Matrices Exercise 3.2

Class 12 Ex 3.2 NCERT Solutions

Class 12 Maths Ncert Solutions Chapter 3 Matrices Exercise 3.2 Question 4.
If A = \(\left[\begin{array}{ccc}
1 & 2 & -3 \\
5 & 0 & 2 \\
1 & -1 & 1
\end{array}\right]\), B = \(=\left[\begin{array}{ccc}
3 & -1 & 2 \\
4 & 2 & 5 \\
2 & 0 & 3
\end{array}\right]\) and C = \(\left[\begin{array}{ccc}
4 & 1 & 2 \\
0 & 3 & 2 \\
1 & -2 & 3
\end{array}\right]\) then compute (A + B) and (B – C). Also, verify that A + (B – C) = (A+ B) – C.
Solution:
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 7

NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2

Class 12 Ex 3.2 Question 5.
If A = \(\left[\begin{array}{ccc}
\frac{2}{\dot{3}} & 1 & \frac{5}{3} \\
\frac{1}{3} & \frac{2}{3} & \frac{4}{3} \\
\frac{7}{3} & 2 & \frac{2}{3}
\end{array}\right]\) and B = \(\left[\begin{array}{ccc}
\frac{2}{5} & \frac{3}{5} & 1 \\
\frac{1}{5} & \frac{2}{5} & \frac{4}{5} \\
\frac{7}{5} & \frac{6}{5} & \frac{2}{5}
\end{array}\right]\), then compute 3A – 5B.
Solution:
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 8

Question 6.
Simplify cos θ\(\left[\begin{array}{ll}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\) + sin θ\(\left[\begin{array}{cc}
\sin \theta & -\cos \theta \\
\cos \theta & \sin \theta
\end{array}\right]\)
Solution:
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 9

Question 7.
Find X and Y, if
i. X + Y = \(\left[\begin{array}{ll}
7 & 0 \\
2 & 5
\end{array}\right]\) and X – Y = \(\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right]\)

ii. 2X + 3Y = \(\left[\begin{array}{ll}
2 & 3 \\
4 & 0
\end{array}\right]\) and 3X + 2Y = \(\left[\begin{array}{ll}
2 & -2 \\
-1 & 5
\end{array}\right]\)
Solution:
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 11

ii. 2X + 3Y = \(\left[\begin{array}{ll}
2 & 3 \\
4 & 0
\end{array}\right]\) …… (1)
3X + 2Y = \(\left[\begin{array}{ll}
2 & -2 \\
-1 & 5
\end{array}\right]\) …… (2)
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 10

NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2

Question 8.
Find X, if Y = \(\left[\begin{array}{ll}
3 & 2 \\
1 & 4
\end{array}\right]\) and 2X + Y = \(\left[\begin{array}{cc}
1 & 0 \\
-3 & 2
\end{array}\right]\).
Solution:
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 12

Question 9.
Find x and y, if 2\(\left[\begin{array}{ll}
1 & 3 \\
0 & x
\end{array}\right]\) + \(\left[\begin{array}{cc}
y & 0 \\
1 & 2
\end{array}\right]\) = \(\left[\begin{array}{ll}
5 & 6 \\
1 & 8
\end{array}\right]\)
Solution:
2\(\left[\begin{array}{ll}
1 & 3 \\
0 & x
\end{array}\right]\) + \(\left[\begin{array}{cc}
y & 0 \\
1 & 2
\end{array}\right]\) = \(\left[\begin{array}{ll}
5 & 6 \\
1 & 8
\end{array}\right]\) ⇒ \(\left[\begin{array}{ll}
2 & 6 \\
0 & 2x
\end{array}\right]\) + \(\left[\begin{array}{cc}
y & 0 \\
1 & 2
\end{array}\right]\) = \(\left[\begin{array}{ll}
5 & 6 \\
1 & 8
\end{array}\right]\)
⇒ \(\left[\begin{array}{cc}
2+y & 6 \\
1 & 2 x+2
\end{array}\right]\) = \(\left[\begin{array}{ll}
5 & 6 \\
1 & 8
\end{array}\right]\)
Equating the corresponding elements, we get
2 + y = 5 and 2x + 2 = 8
⇒ y = 3 and 2x = 6 ⇒ x = 3
∴ x = 3, y = 3

NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2

Question 10.
Solve the equation for x, y, z and t, if 2\(\left[\begin{array}{ll}
x & z \\
y & t
\end{array}\right]\) + 3\(\left[\begin{array}{ll}
1 & -1 \\
0 & 2
\end{array}\right]\) = 3\(\left[\begin{array}{ll}
3 & 5 \\
4 & 6
\end{array}\right]\)
Solution:
2\(\left[\begin{array}{ll}
x & z \\
y & t
\end{array}\right]\) + 3\(\left[\begin{array}{ll}
1 & -1 \\
0 & 2
\end{array}\right]\) = 3\(\left[\begin{array}{ll}
3 & 5 \\
4 & 6
\end{array}\right]\)
⇒ \(\left[\begin{array}{ll}
2x & 2z \\
2y & 2t
\end{array}\right]\) + \(\left[\begin{array}{cc}
3 & -3 \\
0 & 6
\end{array}\right]\) = \(\left[\begin{array}{ll}
9 & 15 \\
12 & 18
\end{array}\right]\)
⇒ \(\left[\begin{array}{cc}
2x+3 & 2z-3 \\
2y & 2t+6
\end{array}\right]\) = \(\left[\begin{array}{ll}
9 & 15 \\
12 & 18
\end{array}\right]\)
⇒ 2x + 3 = 9, 2z – 3 = 15
2y = 12, 2t + 6 = 18 ⇒ x = 3, y = 6, t = 6, z = 9

Question 11.
If x\(\left[\begin{array}{l}
2 \\
3
\end{array}\right]\) + y\(\left[\begin{array}{l}
-1 \\
1
\end{array}\right]\) = \(\left[\begin{array}{l}
10 \\
5
\end{array}\right]\)
Solution:
x\(\left[\begin{array}{l}
2 \\
3
\end{array}\right]\) + y\(\left[\begin{array}{l}
-1 \\
1
\end{array}\right]\) = \(\left[\begin{array}{l}
10 \\
5
\end{array}\right]\) ⇒ \(\left[\begin{array}{l}
2 x \\
3 x
\end{array}\right]+\left[\begin{array}{c}
-y \\
y
\end{array}\right]=\left[\begin{array}{c}
10 \\
5
\end{array}\right]\) ⇒ \(\left[\begin{array}{l}
10 \\
5
\end{array}\right]\)
⇒ 2x – y = 10, 3x + y = 5
Solving, we get x = 3, y = – 4

NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2

Question 12.
Given
\(3\begin{bmatrix} x & \quad y \\ z & \quad w \end{bmatrix}=\begin{bmatrix} x & \quad 6 \\ -1 & \quad 2w \end{bmatrix}+\begin{bmatrix} 4 & \quad x+y \\ z+w & 3 \end{bmatrix} \)
find the values of x,y,z and w.
Solution:
\(3\begin{bmatrix} x & \quad y \\ z & \quad w \end{bmatrix}=\begin{bmatrix} x & \quad 6 \\ -1 & \quad 2w \end{bmatrix}+\begin{bmatrix} 4 & \quad x+y \\ z+w & 3 \end{bmatrix} \)
⇒ \(\begin{bmatrix} 3x & \quad 3y \\ 3z & \quad 3w \end{bmatrix}=\begin{bmatrix} x+4 & \quad 6+x+y \\ -1+z+w & \quad 2w+3 \end{bmatrix}\)
⇒ 3x = x + 4 ⇒ x = 2
and 3y = 6 + x + y ⇒ y = 4
Also, 3w = 2w + 3 ⇒ w = 3
Again, 3z = – 1 + z + w
⇒ 2z = – 1 + 3
⇒ 2z = 2
⇒ z = 1
Hence x = 2 ,y = 4, z = 1, w = 3.

Question 13.
If F(x) = \(\left[\begin{array}{ccc}
\cos x & -\sin x & 0 \\
\sin x & \cos x & 0 \\
0 & 0 & 1
\end{array}\right]\) then show that F(x).F(y) = F(x+y)
Solution:
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 13

Question 14.
Show that
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 14
Solution:
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 15

NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2

Question 15.
Find A² – 5A + 6I, if A = \(\left[\begin{array}{ccc}
2 & 0 & 1 \\
2 & 1 & 3 \\
1 & -1 & 0
\end{array}\right]\)
Solution:
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 16

Question 16.
If A = \(\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 2 & 1 \\
2 & 0 & 3
\end{array}\right]\) Prove that A³ – 6A² + 7A + 2I = 0
Solution:
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 17

Question 17.
If \(\left[\begin{array}{ll}
3 & -2 \\
4 & -2
\end{array}\right]\) and I = \(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\) find k so that A² = kA – 2I
Solution:
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 18

NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2

Question 18.
If A = \(\left[\begin{array}{cc}
0 & -\tan \frac{\alpha}{2} \\
\tan \frac{\alpha}{2} & 0
\end{array}\right]\) and I is the identity matrix of order 2, show that I + A = (I – A)\(\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]\)
Solution:
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 19

Question 19.
A trust has Rs 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year and second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bond if the trust fund obtains an annual total interest of
(a) Rs 1800
(b) Rs 2000
Solution:
(a) Let ₹ and ₹ y be the amount invested in two bonds such that x + y = 30000 … (1)
Then [x y]\(\left[\begin{array}{l}
5 \% \\
7 \%
\end{array}\right]\) = [1800]
⇒ [x × 5% + y x 7%] = [1800]
⇒ \(\frac{x \times 5}{100}+\frac{y \times 7}{100}\)
⇒ 5x + 7y = 180000 … (2)
(1) x 5 = 5x + 5y = 150000 … (3)
Subtracting (3) from (2), we get
2y = 30000 ⇒ y = 15000
From (1), we get x= 15000
∴ To get an interest of ₹ 1800, the amount to be invested in each bonds are ₹ 15000 and ₹ 15000

(b) Here x + y = 30000 … (4)
[x y]\(\left[\begin{array}{l}
5 \% \\
7 \%
\end{array}\right]\) = 2000
⇒ \(\frac{x \times 5}{100}+\frac{y \times 7}{100}\) = 2000
⇒ 5x + 7y = 200000 … (5)
(4) x 5 ⇒ 5x + 5y = 150000 …. (6)
Subtracting (6) from (5), we get
2y = 50000 ⇒ y = 25000
From (4) we get x = 5000
To get an interest of ₹ 2000, the amount to be invested in each bonds is ₹ 5000 and ₹ 25000.

Question 20.
The bookshop of a particular school has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books. Their selling prices are ₹ 80, ₹ 60 and ₹ 40 each respectively. Find the total amount the bookshop will receive from selling all the books using matrix algebra.
Solution:
1 dozen = 12
∴ 10 dozen chemistry books = 10 x 12 = 120
8 dozen physics books = 8 x 12 = 96
10 dozen economics books = 10 x 12 = 120
Total amount the bookshop will receive
= [120 96 120]\(\left[\begin{array}{l} 80 \\ 60 \\ 40 \end{array}\right]\)
= [120 x 80 + 96 x 60 + 120 x 40]
= [9600 + 5760 + 4800] = ₹ 20160
Assume X, Y, Z, W and P are matrices of order 2 x n, 3 x k, 2 x p, n x 3 and p x k, respectively. Choose the correct answer in Exercises 21 and 22.

NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2

Question 21.
The restriction on n, k and p so that PY + WY will be defined are
a. k = 3, p = n
b. k is arbitrary, p = 2
c. p is arbitrary, k = 3
d. k = 2, p = 3
Solution:
Answer:
PY + WY = (P + W)Y
⇒ order of P = order of W
⇒ p k = n x 3
⇒ p = n and k = 3

Question 22.
If n = p, then the order of the matrix 7X – 5Z is
a. p x 2
b. 2 x n
c. n x 3
d. p x n
Solution:
Order of X = 2 x n
Order of Z = 2 x p = 2 x n ∵ (n = p)
∴ Order of 7X – 5Z is order of X or order of Z.

NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.2 Read More »

NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3

These NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 Questions and Answers are prepared by our highly skilled subject experts. https://mcq-questions.com/ncert-solutions-for-class-12-maths-chapter-3-ex-3-3/

NCERT Solutions for Class 12 Maths Chapter 3 Matrices Exercise 3.3

NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3

Ex 3.3 Class 12 NCERT Solutions Question 1.
Find the transpose of each of the following matrices:
(i) \(\left[ \begin{matrix} 5 \\ \frac { 1 }{ 2 } \\ -1 \end{matrix} \right] \)
(ii) \(\begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}\)
(iii) \(\left[ \begin{matrix} -1 & 5 & 6 \\ \sqrt { 3 } & 5 & 6 \\ 2 & 3 & -1 \end{matrix} \right] \)
Solution:
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 1

Question 2.
If \(A=\left[ \begin{matrix} -1 & 2 & 3 \\ 5 & 7 & 9 \\ -2 & 1 & 1 \end{matrix} \right] ,B=\left[ \begin{matrix} -4 & 1 & -5 \\ 1 & 2 & 0 \\ 1 & 3 & 1 \end{matrix} \right] \)
then verify that:
(i) (A + B)’ = A’ + B’
(ii) (A – B)’ = A’ – B’
Solution:
i. (A + B)
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 2
From (1) and (2), (A + B)’ = A’ + B’

ii. (A – B)
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 3
From (1) and (2), (A – B)’ = A’ – B’.

NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3

Question 3.
If \(A’=\left[ \begin{matrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{matrix} \right] ,B=\left[ \begin{matrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{matrix} \right] \)
then verify that:
(i) (A+B)’ = A’+B’
(ii) (A-B)’ = A’-B’
Solution:
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 4

Question 4.
If \(A’=\begin{bmatrix} -2 & 3 \\ 1 & 2 \end{bmatrix} ,B=\begin{bmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix} \) then find (A+2B)’
Solution:
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 5

Question 5.
For the matrices A and B, verify that (AB)’ = B’A’, where
\((i)\quad A=\left[ \begin{matrix} 1 \\ -4 \\ 3 \end{matrix} \right] ,B=\left[ \begin{matrix} -1 & 2 & 1 \end{matrix} \right] \)
\((ii)\quad A=\left[ \begin{matrix} 0 \\ 1 \\ 2 \end{matrix} \right] ,B=\left[ \begin{matrix} 1 & 5 & 7 \end{matrix} \right] \)
Solution:
\((i)\quad A=\left[ \begin{matrix} 1 \\ -4 \\ 3 \end{matrix} \right] \)
\(A’=\left[ \begin{matrix} 1 & -4 & 3 \end{matrix} \right] \)
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 6

NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3

Question 6.
If (i) \(A=\begin{bmatrix} cos\alpha & \quad sin\alpha \\ -sin\alpha & \quad cos\alpha \end{bmatrix} \) , the verify that A’A = I
If (ii) \(A=\begin{bmatrix} sin\alpha & \quad cos\alpha \\ -cos\alpha & \quad sin\alpha \end{bmatrix} \), the verify that A’A = I
Solution:
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 7

Question 7.
(i) Show that the matrix \(A=\left[ \begin{matrix} 1 & -1 & 5 \\ -1 & 2 & 1 \\ 5 & 1 & 3 \end{matrix} \right] \) is a symmetric matrix.
(ii) Show that the matrix \(A=\left[ \begin{matrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{matrix} \right] \) is a skew-symmetric matrix.
Solution:
(i) \(A=\left[ \begin{matrix} 1 & -1 & 5 \\ -1 & 2 & 1 \\ 5 & 1 & 3 \end{matrix} \right] \), A’ = \(\left[ \begin{matrix} 1 & -1 & 5 \\ -1 & 2 & 1 \\ 5 & 1 & 3 \end{matrix} \right] \) = A
A is symmetric matrix, since A’ = A

(ii) \(A=\begin{bmatrix} sin\alpha & \quad cos\alpha \\ -cos\alpha & \quad sin\alpha \end{bmatrix} \)
A’ = \(\left[ \begin{matrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{matrix} \right] \) = – 1\(\left[ \begin{matrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{matrix} \right] \)
A’ = – A
A is a skew-symmetric matrix, since A’ = A

Question 8.
For the matrix, \(A=\begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix}\)
(i) (A + A’) is a symmetric matrix.
(ii) (A – A’) is a skew-symmetric matrix.
Solution:
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 8

Question 9.
Find \(\\ \frac { 1 }{ 2 } (A+A’)\) and \(\\ \frac { 1 }{ 2 } (A-A’)\), when \(A=\left[ \begin{matrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{matrix} \right] \)
Solution:
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 9

NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3

Question 10.
Express the following matrices as the sum of a symmetric and a skew-symmetric matrix.
(i) \(\begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix}\)
(ii) \(\left[ \begin{matrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{matrix} \right] \)
(iii) \(\left[ \begin{matrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{matrix} \right] \)
(iv) \(\begin{bmatrix} 1 & 5 \\ -1 & 2 \end{bmatrix}\)
Solution:
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 10
Thus A can be represented as a sum of a symmetric and a skew-symmetric matrix.

NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 11
Thus B can be expressed as the sum of a symmetric and a skew-symmetric matrix.

NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 12
Thus A can be expressed as the sum of a symmetric and skew-symmetric matrix.

NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 13
Thus D can be expressed as the sum of a symmetric and a skew-symmetric matrix.

NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3

Question 11.
Choose the correct answer in the following questions:
If A, B are symmetric matrices of same order then AB-BA is a
(a) Skew – symmetric matrix
(b) Symmetric matrix
(c) Zero matrix
(d) Identity matrix
Solution:
Now A’ = B, B’ = B
(AB – BA)’ = (AB)’ – (BA)’
= B’A’ – A’B’
= BA – AB
= – (AB – BA)
AB – BA is a skew-symmetric matrix Hence, option (a) is correct.

Question 12.
If \(A=\begin{bmatrix} cos\alpha & \quad -sin\alpha \\ sin\alpha & \quad cos\alpha \end{bmatrix}\) then A+A’ = I, if the
value of α is
(a) \(\frac { \pi }{ 6 } \)
(b) \(\frac { \pi }{ 3 } \)
(c) π
(d) \(\frac { 3\pi }{ 2 } \)
Solution:
Now
NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 14
Thus option (b) is correct.

NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3 Read More »

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise

These NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise Questions and Answers are prepared by our highly skilled subject experts. https://mcq-questions.com/ncert-solutions-for-class-12-maths-chapter-2-miscellaneous-exercise/

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise

Question 1.
cos-1(cos\(\frac { 13π }{ 6 }\))
Solution:
The principal value brach of cos-1 is [0, p]
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise 1

Question 2.
tan-1(tan\(\frac { 7π }{ 6 }\))
Solution:
The principal value brach of tan-1 is (- \(\frac { π }{ 2 }\), \(\frac { π }{ 2 }\))
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise 2

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise

Question 3.
2sin-1\(\frac { 3 }{ 5 }\) = tan-1\(\frac { 24 }{ 7 }\)
Solution:
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise 3

Question 4.
sin-1\(\frac { 8 }{ 17 }\) + sin-1\(\frac { 3 }{ 5 }\) = tan-1\(\frac { 77 }{ 36 }\)
Solution:
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise 4

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise

Question 5.
cos-1\(\frac { 4 }{ 5 }\) + cos-1\(\frac { 12 }{ 13 }\) = cos-1\(\frac { 33 }{ 65 }\)
Solution:
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise 5

Question 6.
cos-1\(\frac { 12 }{ 13 }\) + sin-1\(\frac { 3 }{ 5 }\) = sin-1\(\frac { 56 }{ 65 }\)
Solution:
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise 6

Question 7.
tan-1\(\frac { 63 }{ 16 }\) = sin-1\(\frac { 5 }{ 13 }\) + cos-1\(\frac { 3 }{ 5 }\)
Solution:
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise 7

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise

Question 8.
tan-1\(\frac { 1 }{ 5 }\) + tan-1\(\frac { 1 }{ 7 }\) + tan-1\(\frac { 1 }{ 3 }\) + tan-1\(\frac { 1 }{ 8 }\) = \(\frac { π }{ 4 }\)
Solution:
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise 8

Question 9.
tan-1\(\sqrt{x}\) = \(\frac { 1 }{ 2 }\)cos-1\(\left(\frac{1-x}{1+x}\right), x \in[0,1]\)
Solution:
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise 8

Question 10.
cot-1\(\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right)\) = \(\frac { x }{ 2 }\) x ∈ (0, \(\frac { π }{ 4 }\))
Solution:
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise 10

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise

Question 11.
tan-1\(\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right)\) = \(\frac { π }{ 4 }\) – \(\frac { 1 }{ 2 }\) cos-1 x, – \(\frac{1}{\sqrt{2}} \leq x \leq 1\)
Solution:
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise 11

Question 12.
\(\frac { 9p }{ 8 }\) – \(\frac { 9 }{ 4 }\)sin-1\(\frac { 1 }{ 3 }\) = \(\frac { 9 }{ 4 }\)sin-1\(\frac{2 \sqrt{2}}{3}\)
Solution:
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise 12

Question 13.
2tan-1(cosx) = tan-1(2cosecx)
Solution:
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise 13

Question 14.
tan-1\(\frac{1-x}{1+x}\) = \(\frac { 1 }{ 2 }\) tan-1x, (x > 0)
Solution:
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise 14

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise

Question 15.
sin(tan-1x), |x| < 1 is equal to
a. \(\frac{x}{\sqrt{1-x^{2}}}\)
b. \(\frac{1}{\sqrt{1-x^{2}}}\)
c. \(\frac{1}{\sqrt{1+x^{2}}}\)
d. \(\frac{x}{\sqrt{1+x^{2}}}\)
Solution:
d. \(\frac{x}{\sqrt{1+x^{2}}}\)
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise 15

Question 16.
sin-1(1 – x) – 2sin-1x = \(\frac { π }{ 2 }\), then x is equal to
a. 0, \(\frac { 1 }{ 2 }\)
b. 1, \(\frac { 1 }{ 2 }\)
c. 0
d. \(\frac { 1 }{ 2 }\)
Solution:
c. 0
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise 16
But x ≠ \(\frac { 1 }{ 2 }\), since sin-1(1 – \(\frac { 1 }{ 2 }\)) ≠ \(\frac { π }{ 2 }\) + 2 sin-1\(\frac { 1 }{ 2 }\)
∴ x = 0.

Question 17.
tan-1 \(\frac { x }{ y }\) – tan-1 \(\frac{x-y}{x+y}\)
Solution:
a. \(\frac { π }{ 2 }\)
b. \(\frac { π }{ 3 }\)
c. \(\frac { π }{ 4 }\)
d. \(\frac { -3π }{ 4 }\)
Solution:
c. \(\frac { π }{ 4 }\)
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise 17

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise Read More »

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2

These NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 Questions and Answers are prepared by our highly skilled subject experts. https://mcq-questions.com/ncert-solutions-for-class-12-maths-chapter-2-ex-2-2/

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Exercise 2.2

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2

Ex 2.2 Class 12 NCERT Solutions Question 1.
3sin-1x = sin-1(3x – 4x³). x ∈ [-\(\frac { 1 }{ 2 }\), \(\frac { 1 }{ 2 }\)]
Solution:
Let θ = sin-1 ⇒ x = sin θ
∴ 3x – 4x³ = 3sinθ – 4sin³θ = sin3 θ
∴ 3θ = sin-1(3x – 4x³)
⇒ 3sin-1x = sin-1(3x – 4x³)

Class 12th Maths Chapter 2 Exercise 2.2 Question 2.
3cos-1x = cos-1(4x³ – 3x). x ∈ [\(\frac { 1 }{ 2 }\), 1]
Solution:
Let θ cos-1 ⇒ x = cos θ
4x³ – 3x = 4cos³θ – 3cosθ = cos 3 θ
⇒ 3θ = cos-1(4x³ – 3x)
⇒ 3cos-1x = cos-1(4x³ – 3x)

Maths Ex 2.2 Class 12 NCERT Solutions Question 3.
tan-1\(\frac { 2 }{ 11 }\) + tan-1\(\frac { 7 }{ 24 }\) = tan-1\(\frac { 1 }{ 2 }\)
Solution:
Ex 2.2 Class 12 NCERT Solutions

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2

Ncert Ex 2.2 Class 12  Question 4.
2tan-1\(\frac { 1 }{ 2 }\) + tan-1\(\frac { 1 }{ 7 }\) = tan-1\(\frac { 31 }{ 17 }\)
Solution:
Class 12th Maths Chapter 2 Exercise 2.2

Exercise 2.2 Maths Class 12 Solutions Question 5.
tan-1\(\frac{\sqrt{1+x^{2}}-1}{x}\), x ≠ 0
Solution:
Maths Ex 2.2 Class 12 NCERT Solutions

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2

Question 6.
tan-1\(\frac{1}{\sqrt{x^{2}-1}}\), |x| > 1
Solution:
Ncert Ex 2.2 Class 12

Question 7.
tan-1\(\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right)\), x < π
Solution:
Exercise 2.2 Maths Class 12 Solutions

Question 8.
tan-1\(\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right)\), x < π
Solution:
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 6

Question 9.
tan-1\(\frac{x}{\sqrt{a^{2}-x^{2}}}\), |x| < a
Solution:
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 7

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2

Question 10.
tan-1\(\left(\frac{3 a^{2} x-x^{3}}{a^{3}-3 a x^{2}}\right), a>0 ; \frac{-a}{\sqrt{3}} \leq x \leq \frac{a}{\sqrt{3}}\).
Solution:
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 8

Question 11.
tan-1[2 cos(2 sin-1\(\frac{1}{2}\))]
Solution:
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 9

Question 12.
cot(tan-1 a + cot-1 a)
Solution:
Since tan-1 a + cot-1 a = \(\frac{π}{2}\),
cot(tan-1 a + cot-1 a = cot(\(\frac{π}{2}\)) = 0

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2

Question 13.
tan\(\frac{1}{2}\)[\(\left[\sin ^{-1} \frac{2 x}{1+x^{2}}+\cos ^{-1} \frac{1-y^{2}}{1+y^{2}}\right]\))], |x| < 1, y > 0 and xy < 1
Solution:
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 10

Question 14.
If sin(sin-1\(\frac{1}{5}\) + cos-1x) = 1, then find the value of x.
Solution:
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 11

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2

Question 15.
If tan-1\(\frac{x-1}{x-2}\) + tan-1\(\frac{x+1}{x+2}\), then find the value of x.
Solution:
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 12

Question 16.
sin-1\(\left(\sin \frac{2 \pi}{3}\right)\)
Solution:
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 13

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2

Question 17.
tan-1\(\left(\tan \frac{3 \pi}{4}\right)\)
Solution:
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 14

Question 18.
tan\(\left(\sin ^{-1} \frac{3}{5}+\cot ^{-1} \frac{3}{2}\right)\)
Solution:
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 15

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2

Question 19.
cos-1\(\left(\cos \frac{7 \pi}{6}\right)\) is equal to
a. \(\frac{7π}{6}\)
b. \(\frac{5π}{6}\)
c. \(\frac{π}{3}\)
d. \(\frac{π}{6}\)
Solution:
b. \(\frac{5π}{6}\)
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 16

Question 20.
sin\(\left(\frac{\pi}{3}-\sin ^{-1}\left(\frac{-1}{2}\right)\right)\) is equal to
a. \(\frac{1}{2}\)
b. \(\frac{1}{3}\)
c. \(\frac{1}{4}\)
d. 1
Solution:
d. 1
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 17

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2

Question 21.
tan-1\(\sqrt{3}\) – cot-1\(\sqrt{3}\) is equal to
a. π
b. – \(\frac{π}{2}\)
c. 0
d. 2\(\sqrt{3}\)
Solution:
b. – \(\frac{π}{2}\)
tan-1\(\sqrt{3}\) – cot-1(-\(\sqrt{3}\))
= \(\sqrt{3}\) – (π – cot-1\(\sqrt{3}\))
= (tan-1\(\sqrt{3}\) + cot-1\(\sqrt{3}\)) – π
= \(\frac{π}{2}\) – π = – \(\frac{π}{2}\)

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 Read More »

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.1

These NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.1 Questions and Answers are prepared by our highly skilled subject experts. https://mcq-questions.com/ncert-solutions-for-class-12-maths-chapter-2-ex-2-1/

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Exercise 2.1

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.1

Ex 2.1 Class 12 Question 1.
sin-1\(\frac { -1 }{ 2 }\)
Solution:
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.1 1

Question 2.
cos-1\(\left(\frac{\sqrt{3}}{2}\right)\)
Solution:
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.1 2

Question 3.
cosec-1(2)
Solution:
The principal values branch of cosec-1 is
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.1 3

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.1

Question 4.
tan-1(-\(\sqrt{3}\))
Solution:
The principal values branch of tan-1 is
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.1 4

Question 5.
cos-1\(\frac { – 1 }{ 2 }\)
Solution:
The principal values branch of cos-1 is [0, π]
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.1 5

Question 6.
tan-1(-1)
Solution:
The principal values branch of tan-1 is
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.1 6

Question 7.
sec-1\(\left(\frac{2}{\sqrt{3}}\right)\)
Solution:
The principal values branch of sec-1 is
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.1 7

Question 8.
cot-1(\(\sqrt{3}\))
Solution:
The principal values branch of cot-1 is [0, π]
cot\(\frac { π }{ 6 }\) = \(\sqrt{3}\), \(\frac { π }{ 6 }\) ∈ [0, π]
∴ Priciapal value of cot-1\(\sqrt{3}\) is \(\frac { π }{ 6 }\)

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.1

Question 9.
cos-1\(\left(\frac{-1}{\sqrt{2}}\right)\)
Solution:
The principal values branch of cos-1 is [0, π]
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.1 8

Question 10.
cosec-1(\(\sqrt{-2}\))
Solution:
The principal values branch of cosec-1 is
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.1 9

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.1

Question 11.
tan-1(1) + cos-1(\(\frac { – 1 }{ 2 }\)) + sin-1(\(\frac { – 1 }{ 2 }\))
Solution:
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.1 10

Question 12.
cos-1(\(\frac { 1 }{ 2 }\)) + 2 sin-1(\(\frac { 1 }{ 2 }\))
Solution:
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.1 11

Question 13.
If sin-1 x = y, then
a. 0 ≤ y ≤ π
b. – \(\frac { π }{ 2 }\) ≤ y ≤ \(\frac { π }{ 2 }\)
c. 0 < y < π
d. – \(\frac { π }{ 2 }\) < y < \(\frac { π }{ 2 }\)
Solution:
b. – \(\frac { π }{ 2 }\) ≤ y ≤ \(\frac { π }{ 2 }\)
The principal values branch of sin-1 is
[\(\frac { – π }{ 2 }\), \(\frac { π }{ 2 }\)] . i.e., \(\frac { – π }{ 2 }\) ≤ y ≤ \(\frac { π }{ 2 }\)

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.1

Question 14.
tan-1\(\sqrt{3}\) – sec-1 ( – 2) is equal to
a. π
b . \(\frac { – π }{ 3 }\)
c. \(\frac { π }{ 3 }\)
d. \(\frac { 2π }{ 3 }\)
Solution:
b . \(\frac { – π }{ 3 }\)
tan-1\(\sqrt{3}\) – sec-1 ( – 2) = \(\frac { π }{ 3 }\) – \(\frac { 2π }{ 3 }\) = \(\frac { – π }{ 3 }\)

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.1 Read More »

NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.3

These NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.3 Questions and Answers are prepared by our highly skilled subject experts. https://mcq-questions.com/ncert-solutions-for-class-12-maths-chapter-1-ex-1-3/

NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions 1.3

NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.3

Question 1.
Let f : {1,3,4} → (1,2, 5} and g: (1, 2, 5} → {1, 3} be given by f = {(1, 2), (3, 5), (4, 1)} and g = {(1, 3), (2, 3), (5, 1)}. Write down gof.
Solution:
NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.3 1
gof = {(1, 3),(3, 1), (4, 3)}

Question 2.
Let f, g and h be functions from R to R. Show that
i. (f + g)oh = foh + goh
ii. (f. g)oh = (foh) . (goh)
Solution:
i. (f + g)oh(x) = (f + g)h(x)) = f(h(x)) + g(h(x)) = (foh)(x) + (goh)(x)
∴ (f + g)oh = foh + goh

ii. (f. g)oh(x) = (f.g)(h(x))
= f(h(x)).g(h(x))
= (foh)(x). (goh)(x)
= [(foh).(goh)](x)
∴ (f. g)oh = (foh) . (goh)

NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.3

Question 3.
Find gof and fog, if
i. f(x) = |x| and g(x) = |5x – 2|
ii. f(x) = 8x and g(x) = x\(x^{\frac{1}{3}}\)
(March 2014, SAY 2015, March 2016)
Solution:
i. (gof)(x) = g(f(x)) = g(|x|) = |5|x| – 2|
(fog)(x) = f(g(x)) = f(|5x – 2|)
= ||5x – 2|| = |5x – 2|

ii. (gof)(x) = g(f(x)) = g(8x³) = (8x³ )A1/3 = 2x
(fog)(x) = f(g(x)) = f(x1/3) = 8(x1/3)³ = 8x

Inverse Function Calculator. Use this free tool to find the inverse of a function

Question 4.
If f(x) = \(\frac{(4 x+3)}{(6 x-4)}\), x ≠ 3, show that fof (x) = x, for all x ≠ \(\frac{2}{3}\). What is the inverse of f?
Solution:
NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.3 2

Another method:
Without using the result fof(x) = x, we can directly find the inverse off.
NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.3 3

NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.3

Question 5.
State with reason whether following functions have inverse
i. f : {1,2, 3,4} → {10} with
f = {(1, 10), (2, 10), (3, 10), (4, 10)}
ii. g: {5, 6, 7, 8} → {1, 2, 3, 4} with g ={(5, 4), (6, 3), (7, 4), (8, 2)}
iii. h : {2, 3,4, 5} → {7, 9, 11, 13} with h = {(2, 7), (3, 9), (4, 11), (5, 13)}
Solution:
i. The elements 1,2,3 and 4 have the same image.
∴ g is not one-one.
Hence g has no inverse.

ii. The image of the elements 5 and 7 is the same
∴ g is not one-one
Hence g has no inverse.

iii.
NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.3 4
From the arrow diagram, it is clear that h is one-one and onto.
Hence h has inverse.

Question 6.
Show that f : [-1, 1] → R, given by f(x) = \(\frac{x}{(x+2)}\) is one-one. Find the inverse of the function f : [- 1, 1] → Range f.
Solution:
Let x1, x2 ∈ [-1, 1]
f(x1) = f(x2) ⇒ \(\frac{x_{1}}{2+x_{1}}\) = \(\frac{x_{2}}{2+x_{2}}\)
⇒ x1(2 + x2) = x2(2 + x1)
⇒ 2x1 + x1x2 = 2x2 + x1x2
⇒ 2x1 = 2x2
⇒ x1 = x2
∴ f is one-one
Let y = \(\frac{x}{x+2}\) ⇒ y(x + 2)= x
⇒ xy – x = – 2y
⇒ x (1 – y) = 2y
⇒ x = \(\frac{2y}{1-y}\), y ≠ 1
∴ f-1(x) = \(\frac{2x}{1-x}\)

NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.3

Question 7.
Consider f : R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.
Solution:
f(x) = 4x + 3, x ∈ R
Domain of f = R and range of f = R
One-one
Let x1, x2 ∈ R
f(x1) = f(x2) ⇒ 4x1 + 3 = 4x2 + 3
⇒ 4x1 = 4x2
⇒ x1 = x2
∴ f is one-one.

Onto
Let y ∈ range of f such that y = f(x)
NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.3 5
i.e., corresponding to every y ∈ R, there exists a real number \(\frac{y-3}{4}\) such that f(\(\frac{y-3}{4}\)) = y
∴ f is onto
Hence f is a bijection and f-1 exists
To find f-1
Let y = f(x)
Then x = \(\frac{y-3}{4}\) from (1)
∴ Inverse of/is given by f-1(x) = \(\frac{x-3}{4}\)

Question 8.
Consider f : R+ → [4, ∞) given by f(x) = x2 + 4. Show that f is invertible with the inverse f-1 of f given by f-1(y) = \(\sqrt{y-4}\), where R+ is the set of all non-negative real numbers.
Solution:
Let x1, x2 ∈ R+ such that f(x1) = f(x2)
⇒ x²1 + 4 = x²2 + 4
⇒ x²1 = x²2 ⇒ (x²1 – x²2) = 0
⇒ (x1 – x2) (x1 + x2) = 0
⇒ x1 – x2 = 0 since x1, x2 ∈ R
⇒ x1 = x2
∴ f is one-one.
Let y ∈ [4, ∞) such that y = f(x)
⇒ y = x2 + 4 ⇒ x2 = y – 4
⇒ x = \(\sqrt{y – 4}\) since x ∈ R+
i.e., x = \(\sqrt{y – 4}\) ∈ R++ …. (1)
f(x) = f(\(\sqrt{y – 4}\)) = (\(\sqrt{y – 4}\))² + 4
= y – 4 + 4 = y
∴ f is onto
Since f is one-one and onto, f is invertible.
To find f-1
Let y = x2 + 4
⇒ x = \(\sqrt{y – 4}\) from(1)
∴ f-1(y) = \(\sqrt{y – 4}\)

NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.3

Question 9.
Consider f : R+ → [- 5, ∞) given by f(x) = 9x2 + 6x – 5. Show that f is invertible with f-1(y) = \(\left(\frac{(\sqrt{y+6})-1}{3}\right)\)
Solution:
Let y = 9x2 + 6x – 5 = (3x + 1)²
⇒ (3x + 1)² = y + 6
⇒ 3x + 1 = \(\sqrt{y + 6}\) ⇒ 3x = \(\sqrt{y + 6}\) – 1
⇒ x = \(\frac{\sqrt{y+6}-1}{3}\)
NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.3 6
Hence gof = fog = Identity function. Hence f is invertible and
f-1(y) = \(\left(\frac{(\sqrt{y+6})-1}{3}\right)\)

Question 10.
Let f : X → Y be an invertible function. Show that f has unique inverse.
Solution:
Let g1 and g2 be two inverses of f.
Then for all y ∈ Y
(fog1)y = y and (fog2)y = y
⇒ (fog1)y = (fog2)(y)
⇒ f(g1(y)) = f(g2(y))
⇒ g1(y) = g2(y) since f is one-one
⇒ g1 = g2
Hence the inverse of f is unique.

Question 11.
Consider f : {1,2, 3} → {a, b,c} given by f(1) = a, f (2) = b and f(3) = c. Find f-1 and show that (f-1)-1 = f.
Solution:
f = {(1, a), (2, b), (3, c)}
f-1 = {(a, 1), (b, 2), (c, 3))
Clearly f is bijective
(f-1)-1 = {(1, a), (2, b), (3, c)} = f

NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.3

Question 12.
Let f : X → Y be an invertible function. Show that the inverse of f-1 is f, i.e., (f-1)-1 = f.
Solution:
f : X → Y is invertible. Then f-1 : Y → X
Let x ∈ X , then y = f(x) ∈ Y such that f-1 (y) = x
Now (f-1of)(x) = f-1(f(x)) = f-1(y) = x
and (fof-1)(y) = f(f-1(y)) = f(x) = y
i.e., f-1 of and fof-1 are identity functions.
Hence they are inverse of each other.
i.e., the inverse of f-1 is f.
i.e., (f-1)-1 = f.

Question 13.
If f : R → R be given by f(x) = (3 – x3)\(\frac { 1 }{ 3 }\), then fof (x) is
a. x\(\frac { 1 }{ 3 }\)
b. x³
c. x
d. (3 – x³)
Solution:
c. x
NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.3 7

NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.3

Question 14.
Let f : R – { – \(\frac { 4 }{ 3 }\) } → be a function defined as f(x) = \(\frac { 4x }{ 3x+4 }\). The inverse of f is the map g : Range f → R – \(\frac { 4 }{ 3 }\) given by
a. g(y) = \(\frac { 3y }{ 3-4y }\)
b. g(y) = \(\frac { 4y }{ 4-3y }\)
a. g(y) = \(\frac { 4y }{ 3-4y }\)
a. g(y) = \(\frac { 3y }{ 4-3y }\)
Solution:
b. g(y) = \(\frac { 4y }{ 4-3y }\)
Let \(\frac { 4x }{ 3x+4 }\) = y ⇒ 4x = 3xy + 4y
⇒ 4x – 3xy = 4y ⇒ x = \(\frac { 4y }{ 4-3y }\)
∴ g(y) = \(\frac { 4y }{ 4-3y }\).

NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions Ex 1.3 Read More »

error: Content is protected !!