These NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry Ex 8.4 Questions and Answers are prepared by our highly skilled subject experts.
NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry Exercise 8.4
![]()
Question 1.
Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
Solution:
We know that

Question 2.
Write all the other trigonometric ratios of ∠A in terms of sec A.
Solution:
We know that

![]()
Question 3.
Evaluate:
(i) \(\frac{\sin ^{2} 63^{\circ}+\sin ^{2} 27^{\circ}}{\cos ^{2} 17^{\circ}+\cos ^{2} 73^{\circ}}\)
(ii) sin 25° cos 65° + cos 25° sin 65°
Solution:
(i) We know that

(ii) We know that
sin 25° cos 65° + cos 25° sin 65°
= sin 25° cos (90° – 25°) + cos 25° sin (90° – 25°)
= sin 25° sin 25° + cos 25° cos 25°
= sin² 25° + cos² 25° = 1 (sin² θ + cos² θ)
![]()
Question 4.
Choose the correct option. Justify your choice.
(i) 9 sec² A – 9 tan² A =
(A) 1
(B) 9
(C) 8
(D) 0
(ii) (1 + tan θ + sec θ) (1 + cot θ – cosec θ ) =
(A) 0
(B) 1
(C) 2
(D) -1
(iii) (sec A + tan A) (1 – sin A) =
(A) sec A
(B) sin A
(C) cosec A
(D) cos A
(iv) \(\frac{1+\tan ^{2} A}{1+\cot ^{2} A}\)
(A) sec² A
(B) -1
(C) cot² A
(D) tan² A
Solution:
(i) We know that
9 sec² A – 9 tan² A = 9(sec² A – tan² A)
= 9 x 1 = 9
Correct option is (B)
(ii) We know that
(1 + tan θ + sec θ) (1 + cot θ – cosec θ )

So, the correct option is (C)
(iii) We have given,

So, the correct option is (D)
(iv) We have given,

So, the correct option is (D)
![]()
Question 5.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

Solution:


(vi) L.H.S
\(\sqrt{\frac{1+\sin A}{1-\sin A}}\)
Multiply both numerator and denominator by \(\sqrt{1+\sin A}\)

(viii) (sin A + cosec A)² + (cos A + sec A)² = 7 + tan²A + cot²A.
Solution:
L.H.S.
(sin A + cosec A)² (cos A + sec A)²
= (sin² A + cosec² A + 2sin A + cosec A) + (cos²A + sec² A + 2cos. A sec A)
= sin² A + cosec² A + ²) + (cos² A + sec² A + 2) [∵sin A cosec A = 1 and cos A sec A = 1]
= (sin² A + cos² A) + 4 + sec² A + cosec² A
= 5 (1 + tan² A) + 1 + cot² A) [∵ sec² A = (1 + tan² A) and cosec² A = (1 + cot² A)]
= 7 tan² A + cot² A = R.H.S.
(ix) (cosec A – sin A) (sec A – cos A) = \(\frac{1}{\tan A+\cot A}\)
[Hint: Simplify LHS and RHS separately]
Solution:
L.H.S.
