Class 9 Maths NCERT Solutions Hindi Medium

NCERT Solutions for Class 9 Maths Chapter 5 Introduction to Euclid's Geometry (Hindi Medium)

NCERT Solutions for Class 9 Maths Chapter 5 Introduction to Euclid’s Geometry (Hindi Medium)

NCERT Solutions for Class 9 Maths Chapter 5 Introduction to Euclid’s Geometry (युक्लिड के ज्यामिति का परिचय) (Hindi Medium)

These Solutions are part of NCERT Solutions for Class 9 Maths in Hindi Medium. Here we have given NCERT Solutions for Class 9 Maths Chapter 5 Introduction to Euclid’s Geometry.

प्रश्नावली : 5.1

Ex 5.1 Class 9 गणित Q1. निम्नलिखित कथनों में से कौन-से कथन सत्य हैं और कौन-से कथन असत्य हैं? अपने उत्तरों
के लिए कारण दीजिए।
(i) एक बिंदु से होकर वेफवल एक ही रेखा खींची जा सकती है।
(ii) दो भिन्न बिंदुओं से होकर जाने वाली असंख्य रेखाएँ हैं।
(iii) एक सांत रेखा दोनों ओर अनिश्चित रूप से बढ़ाई जा सकती है।
(iv) यदि दो वृत्त बराबर हैं, तो उनकी त्रिज्याएँ बराबर होती हैं।
(v) आकृति 5.9 में, यदि AB = PQ और PQ = XY, तो AB = XY होगा |
NCERT Solutions For Class 9 Maths Hindi Medium 5.1 1
Solution :
(i) असत्य, एक बिंदु से होकर अनंत रेखाएं खिंची जा सकती है |
(ii) असत्य, दो भिन्न बिन्दुओ से होकर केवल एक रेखा खिंची जा सकती है |
(iii) सत्य, एक सांत रेखा दोनों ओर अनिश्चित रूप से बढ़ाई जा सकती है।
(iv) सत्य, बराबर त्रिज्याओं से बराबर वृत्त खिंचा जाता है |
(v) सत्य, सभी तीनों रेखाएँ एक दुसरे के बराबर हैं |

Ex 5.1 Class 9 गणित Q2. निम्नलिखित पदों में से प्रत्येक की परिभाषा दीजिए। क्या इनके लिए कुछ ऐसे पद हैं, जिन्हें
परिभाषित करने की आवश्यकता है? वे क्या हैं और आप इन्हें कैसे परिभाषित कर पाएँगे?
(i) समांतर रेखाएँ
(ii) लम्ब रेखाएँ
(iii) रेखाखंड
(iv) वृत्त की त्रिज्या
(v) वर्ग
Solution :
(i) समांतर रेखाएँ : वे दो रेखाएँ समान्तर कहलाती है जो एक दुसरे से कभी नहीं मिलती है और उनकी बीच की दुरी सदैव सामान रहता है |
(ii) लम्ब रेखाएँ : दो रेखाएँ एक दुसरे पर इस प्रकार खड़ी रहती है कि उनके बीच का कोण एक समकोण होता है तो ऐसे रेखाओं को लम्ब रेखाएँ कहते हैं |
(iii) रेखाखंड : जिस रेखा के दो अंत बिंदु हो उसे रेखाखंड कहते है |
(iv) वृत्त की त्रिज्या : वृत्त के केंद्र और परिधि के बीच की दुरी को त्रिज्या कहते हैं |
(v) वर्ग : वह बंद आकृति जिसके सभी भुजाएँ बराबर हो |

Ex 5.1 Class 9 गणित Q3. नीचे दी हुई दो अभिधरणाओं पर विचार कीजिए:
(i) दो भिन्न बिंदु A और B दिए रहने पर, एक तीसरा बिंदु C ऐसा विद्यमान है जो A और B के बीच स्थित होता है।
(ii) यहाँ कम से कम ऐसे तीन बिंदु विद्यमान हैं कि वे एक रेखा पर स्थित नहीं हैं।
Solution : 
हाँ, यह अभिधारणा में दो अपरिभाषित तथ्य है जिसमें रेखाएँ और बिंदु है |
हाँ, यह अभिधारणा असंगत है क्योंकि ये दो भिन्न स्थितियों से संबंधित है और इनमें से कोई भी युक्लिड की अभिधारणा से का अनुसरण नहीं करता है |

Ex 5.1 Class 9 गणित Q4. यदि दो बिन्दुओं A और B के बीच एक बिंदु C ऐसा स्थित है कि AC = CD है, तो सिद्ध कीजिए कि AC = ½AB है | एक आकृति खींच कर इसे स्पष्ट कीजिए|
Solution :
दिया है : AC = BC
Maths NCERT Solutions Class 9 Hindi Medium 5.1 4
सिद्ध करना है : AC = AB
प्रमाण : AC +BC = AB
अथवा  AC + AC = AB
अथवा       2AC = AB
Class 9 Maths NCERT Solutions Hindi Medium 5.1 4.1

Ex 5.1 Class 9 गणित Q5. प्रश्न 4 में, बिंदु C रेखाखंड AB का एक मध्यबिंदु कहलाता है | सिद्ध कीजिए कि एक रेखाखंड का एक और केवल एक ही मध्य-बिंदु होता है|
Solution :
C रेखाखंड AB का मध्य-बिंदु है |
इसलिए,  AC = BC
माना, C’ रेखाखंड AB पर है जो AB का मध्य-बिंदु है |
इसलिए, AC` = BC`
NCERT Maths Solutions For Class 9 Hindi Medium 5.1 5
समीकरण (1) और (2) से
AC`= AC
अथवा  C`= C
इसलिए, C और C` एक ही बिंदु है अर्थात संपाती है |
अत: एक रेखाखंड के एक ही मध्य-बिंदु होते हैं |

Ex 5.1 Class 9 गणित Q6. आकृति 5.10 में, यदि AC = BD है तो सिद्ध कीजिए कि AB = CD है | 
NCERT Class 9 Maths Hindi Medium Solutions 5.1 6
Solution:
दिया है : AC = BD
सिद्ध करना  है : AB = CD
प्रमाण :  AC = BD   ……… (1)
समीकरण (1) में से BC घटाने पर;
AC – BC = BD – BC
AB = CD

Ex 5.1 Class 9 गणित Q7. यूक्लिड की अभिगृहीतों की सूची में दिया हुआ अभिगृहीत 5 एक सर्वव्यापी सत्य क्यों माना
जाता है? (ध्यान दीजिए कि यह प्रश्न पाँचवीं अभिधरणा से संबंधित नहीं है।)

Solution :
क्योंकि पूर्ण का कोई भी भाग क्यों न हो, वह अस्तित्व में पूर्ण से आया होगा तब इसके लिए प्रमाण देने की आवश्यकता ही नहीं है कि पूर्ण अपने भाग से बड़ा होगा। जैसे कि इसका प्रमाण देने की आवश्यकता नहीं होती कि पिता पुत्र से आयु में बड़ा होता है।
अत: यह “पूर्ण अपने भाग से बड़ा होता है यह सर्वव्यापी सत्य है।

प्रश्नावली 5.2

Ex 5.2 Class 9 गणित Q1. आप यूक्लिड की पाँचवीं अभिधारणा को किस प्रकार लिखेंगे ताकि वह सरलता से समझी जा सके।
Solution :
यूक्लिड की पाँचवीं अभिधारणा
यदि l और m दो रेखाओं को तीसरी रेखा n काटती है और रेखा n के एक ही ओर बने दोनों अन्तः कोणों का योग दो समकोण से कम हो तो l और m बढ़ाने पर उसी ओर मिलेंगी जिस ओर के कोणों का योग 2 समकोण से कम होगा। अर्थात् दो भिन्न प्रतिच्छेदित रेखाएँ समान रेखा के समान्तर नहीं हो सकती हैं।
NCERT Maths Class 9 Hindi Medium Solutions 5.2 1

Ex 5.2 Class 9 गणित Q2. क्या यूक्लिड की पाँचवीं अभिधारणा से समान्तर रेखाओं के अस्तित्व का औचित्य निर्धारित होता है? स्पष्ट कीजिए।
Solution :
यूक्लिड की पाँचवीं अभिधारणा से समान्तर रेखाओं का अस्तित्व
यदि l और m दो रेखाओं को तीसरी रेखा n काटती है और n के एक ही ओर बने अन्त:कोण ∠1 वे ∠2 का योग 2 समकोण हो तो l और m, रेखा n के एक ओर नहीं मिलेंगी। जब ∠1 + ∠2 = 180° है तो n रेखा के दूसरी ओर बने अन्त:कोणों ∠3 व ∠4 का योग भी 180°होगा तब रेखाएँ l और m, रेखा n के दूसरी ओर भी नहीं मिलेंगी। अतः l औरा m कभी नहीं मिलेंगी, तब l और m रेखाएँ समान्तर होंगी।

Hope given NCERT Solutions for Class 9 Maths Chapter 5 are helpful to complete your homework.

NCERT Solutions for Class 9 Maths Chapter 5 Introduction to Euclid’s Geometry (Hindi Medium) Read More »

NCERT Solutions for Class 9 Maths Chapter 4 Linear Equations in Two Variables (Hindi Medium)

NCERT Solutions for Class 9 Maths Chapter 4 Linear Equations in Two Variables (Hindi Medium)

NCERT Solutions for Class 9 Maths Chapter 4 Linear Equations in Two Variables (दो चरों में रैखिक समीकरण) (Hindi Medium)

These Solutions are part of NCERT Solutions for Class 9 Maths in Hindi Medium. Here we have given NCERT Solutions for Class 9 Maths Chapter 4 Linear Equations in Two Variables.

प्रनावाली 4.1

Ex 4.1 Class 9 गणित Q1. एक नोटबुक की कीमत एक कलम की कीमत से दो गुनी है। इस कथन को निरूपित करने के लिए दो चरों वाला एक रैखिक समीकरण लिखिए। (संकेत मान लीजिएनोटबुक की कीमत x रु है और कलम की कीमत y रु है)।
हल :
माना पेन की कीमत  = y रुपया है
और नोटबुक की कीमत = x रुपया है
प्रश्नानुसार,
नोटबुक की कीमत = 2 ( पेन की कीमत )
x = 2y
⇒ x – 2y = 0

Ex 4.1 Class 9 गणित Q2.  निम्नलिखित रैखिक समीकरणों को ax + by + c = 0  के रूप में व्यक्त कीजिए और प्रत्येक स्थिति में  a, b और c के मान बताइए :
(i) 2+ 3= 9.35
(ii) – 5– 10 = 0
(iii) –2+ 3= 6
(iv) = 3y
(v) 2= –5y
(vi) 3+ 2 = 0
(vii) y– 2 = 0
(viii) 5 = 2x
हल:
(i)  2+ 3= 9.35
दिए गए समीकरण को ax + by + c = 0  के रूप में व्यक्त करने पर
⇒  2x + 3y – 9.35 =  0
अत:   a = 2, b = 3, c = – 9.35

हल: (ii)  –5y – 10 = 0
दिए गए समीकरण को ax by = 0  के रूप में व्यक्त करने पर
 x –5y – 10 = 0
अत: , a = 1, b = -5, c = -10

हल: (iii)  –2+ 3= 6
दिए गए समीकरण को ax by = 0  के रूप में व्यक्त करने पर
⇒ –2+ 3y – 6 = 0
अत:, a = – 2, b = 3, c = – 6

हल: (iv)  = 3y
दिए गए समीकरण को ax by = 0  के रूप में व्यक्त करने पर
⇒ x  3y =  0
अत:, a = 1, b 3, c= 0

हल: (v)  2= –5y
दिए गए समीकरण को ax by = 0  के रूप में व्यक्त करने पर
 2x + 5y = 0
अत:, a = 2, b = 5, c = 0

हल: (vi)  3+ 2 = 0
दिए गए समीकरण को ax by = 0  के रूप में व्यक्त करने पर
⇒ 3x + 0.y + 2 = 0
अत:, a = 3, b = 0, c = 2

हल: (vii)  – 2 = 0
दिए गए समीकरण को ax by = 0  के रूप में व्यक्त करने पर
 0.x + y – 2 = 0
अत:, a = 0, b = 1, c = -2

हल: (Viii)  5 = 2x
दिए गए समीकरण को ax by = 0  के रूप में व्यक्त करने पर
⇒2x – 5= 0
अत:, a = 2, b = 0, c = -5

प्रश्नावली 4.2

Ex 4.2 Class 9 गणित Q1. निम्नलिखित विकल्पों में से कौन-सा विकल्प सत्य है, और क्यों?
= 3+ 5 का
(i) एक अद्वितीय हल है,   
(ii) केवल दो हल है, 
(iii)  अपरिमित रूप से अनेक हल हैं |
हल : (iii) अपरिमित रूप से अनेक हल हैं |

Ex 4.2 Class 9 गणित Q2. निम्नलिखित समीकरणों में से प्रत्येक समीकरण के चार हल लिखिए :
(i) 2x + y = 7
(ii) πx + y = 9
(iii) x = 4y
NCERT Solutions For Class 9 Maths 4.2 2
अत: x और y का दिए गए समीकरण के लिए चार हल निम्नलिखित है :
NCERT Solutions For Class 9 Maths Hindi Medium 4.2 2.1
Maths NCERT Solutions Class 9 Hindi Medium 4.2 2.2
अत: x और y का दिए गए समीकरण के लिए चार हल निम्नलिखित है :
Class 9 Maths NCERT Solutions Hindi Medium 4.2 2.3
NCERT Maths Solutions For Class 9 Hindi Medium 4.2 2.4
अत: x और y का दिए गए समीकरण के लिए चार हल निम्नलिखित है :
NCERT Solutions For Class 9 Maths Linear Equations in Two Variables Hindi Medium 4.2 2.5

Ex 4.2 Class 9 गणित Q3. बताइए कि निम्नलिखित हलों में कौन-कौन समीकरण – 2= 4 के हल है और कौन-कौन नहीं है :
(i) (0, 2)
(ii) (2, 0)
(iii) (4, 0)
Maths NCERT Solutions Class 9 Linear Equations in Two Variables Hindi Medium 4.2 3
(i) (0,2) समीकरण – 2= 4 का हल है अथवा नहीं 
हल : x = 0 और y = 2 रखने पर
– 2= 4
LHS = 0 – 2(2)
= – 4
RHS = 4
इसलिए, LHS ≠ RHS
अत: (0, 2) दिए गए समीकरण का हल नहीं है |

(ii) (2,0) समीकरण x – 2y = 4 का हल है अथवा नहीं
हल : x – 2y = 4  में x = 2 और y = 0 रखने पर
LHS =  2 – 2(0)
= 2 – 0
= 2
जबकि RHS = 4 है
इसलिए, LHS ≠ RHS
अत: (2, 0) दिए गए समीकरण का हल नहीं है |

(iii) (4,0) समीकरण x – 2y = 4 का हल है अथवा नहीं
हल : समीकरण x – 2y = 4 में x = 4 और y = 0 रखने पर
LHS = x – 2y
=  4 – 2(0)
=  4 – 0 = 4
जबकि RHS = 4
यहाँ LHS = RHS है
अत: (4, 0) दिए गए समीकरण का हल है |
Class 9 Maths NCERT Linear Equations in Two Variables Solutions Hindi Medium 4.2 3.1

(v) बताइए (1,1) समीकरण x – 2y = 4 का हल है अथवा नहीं
हल : समीकरण x – 2y = 4 में x = 1 और y = 1 रखने पर
LHS = x – 2y = 1- 2 (1) = 1 – 2 = – 1
जबकि RHS = 4 है
अत: (1, 1) समीकरण x – 2y = 4 का हल नहीं है |

Ex 4.2 Class 9 गणित Q4. k का मान ज्ञात कीजिए जबकि  = 2,  y = 1 समीकरण 2x + 3y = k का एक हल हो |
हल : 2x + 3y = k
x = 2 और y = 1 रखने पर
⇒ 2x + 3y = k
⇒ 2(2) + 3(1) = k
⇒ 4 + 3 = k
⇒ k = 7

प्रश्नावली 4.3

Ex 4.3 Class 9 गणित Q1. दो चरों वाले निम्नलिखित रैखिक समीकरणों में से प्रत्येक का आलेख खींचिए :
(i)  x + y = 4
(ii) x – y = 2
(iii) y = 3x
(iv) 3 = 2x + y
हल : (i) x + y 4
⇒ y = 4 – x
x का मान क्रमश: 0, 1, तथा 2 रखने पर y का मान क्रमश: 4, 3 और 2 प्राप्त होता है जिसकी सारणी निम्न है |
NCERT Maths Solutions For Class 9 Linear Equations in Two Variables Hindi Medium 4.3 1
NCERT Class 9 Maths Hindi Medium Linear Equations in Two Variables Solutions 4.3 1.1
हल : (ii)    – = 2
⇒ = 2 + y
समीकरण में y का मान 1, 2 और 3 रखने पर y का मान क्रमश: 3, 4 और 5 प्राप्त होता है जिसकी सारणी निम्न है –
NCERT Solutions For Maths Class 9 Linear Equations in Two Variables Hindi Medium 4.3 1.2
हल : (iii)   = 3x
समीकरण में x का मान 0, 1 और – 1 रखने पर क्रमश y का मान 0, 3 और -3 प्राप्त होता है –
Maths NCERT Solutions Class 9 Linear Equations in Two Variables Hindi Medium 4.3 1.3
हल : (iv)   3 = 2y
⇒ y = 3 – 2x
समीकरण में x का मान 0, 1 और -1 रखने पर y का मान क्रमश: 3, 1 और  5 प्राप्त होता है जिसकी सारणी निम्न है –
Maths NCERT Class 9 Solutions Linear Equations in Two Variables Hindi Medium 4.3 1.4

Ex 4.3 Class 9 गणित Q2. बिंदु (2, 14) से होकर जाने वाली दो रेखाओं के समीकरण लिखिए | इस प्रकार की और कितनी रेखाएँ हो सकती है , और क्यों ?
हल :   बिंदु (2, 14) में x = 2 और y = 14 है
अत: इस मान को संतुष्ट करने वाले दो समीकरण निम्न है :
x + y = 16
और  x – y =  -12
इस प्रकार की अनंत रेखाए हो सकती है क्योंकि ये रेखाएँ एक ही बिंदु (2, 14) से गुजरेंगी |

Ex 4.3 Class 9 गणित Q3. यदि बिंदु (3, 4) समीकरण 3ax + 7 के आलेख पर स्थित है, तो a का मान ज्ञात कीजिए |
हल :   3y = ax + 7
बिंदु (3, 4) में x = 3 और y = 4 है |
समीकरण 3y = ax + 7  में x और y का मान रखने पर
3(4) = a(3) +7
12 = 3a + 7
3a = 12 – 7
3a = 5

Ex 4.3 Class 9 गणित Q4. एक नगर में टैक्सी का किराया निम्नलिखित है: पहले किलोमीटर का किराया 8 रु है और उसके बाद की दूरी के लिए प्रति किलोमीटर का किराया 5 रु है। यदि तय की गई दूरी x किलोमीटर होऔर कुल किराया y रु होतो इसका एक रैखिक समीकरण लिखिए औरउसका आलेख खींचिए।
हल :  तय की गई दुरी = x km
कुल किराया = y  रु
प्रश्नानुसार,
पहले किलोमीटर का किराया + 5(तय की गई दुरी – 1) = y
8 + 5(x – 1) = y
⇒ 8 + 5x – 5 = y
⇒ 3 + 5x = y
⇒ 5x –y + 3 = 0
⇒ y = 5x + 3
समीकरण में x का मान 0, -1 तथा 1 रखने पर y का मान क्रमश: 3, -2 और 8 प्राप्त होता है |
Linear Equations in Two Variables Maths Solutions For Class 9 NCERT Hindi Medium 4.3 4

Ex 4.3 Class 9 गणित Q5. निम्नलिखित आलेखों में से प्रत्येक के लिए दिए गए विकल्पों से सही समीकरण का चयन कीजिए: 

आकृति 4. 6  के लिएआकृति 4.7 के लिए 
(i)   x
(ii)  = 0
(iii)  = 2x
(iv)  2 + 3= 7x
(i) + 2
(ii) – 2
(iii) = –+ 2
(iv) + 2= 6

Linear Equations in Two Variables Solutions For Maths NCERT Class 9 Hindi Medium 4.3 5
हल :  आकृति 4.6 के लिए
(ii) x + y = 0
आकृति 4.7 के लिए
(iii) y = -x + 2

Ex 4.3 Class 9 गणित Q6. एक अचर बल लगाने पर एक पिंड द्वारा किया गया कार्य पिंड द्वारा तय की गई दूरी के अनुक्रमानुपाती होता है। इस कथन को दो चरों वाले एक समीकरण के रूप में व्यक्त कीजिए और अचर बल 5 मात्रक लेकर इसका आलेख खींचिए। यदि पिंड द्वारा तय की गई दूरी
(i) 2 मात्रक
(ii) 0 मात्रक
हो, तो आलेख से किया हुआ कार्य ज्ञात कीजिए।
हल :
माना किया गया कार्य = y
पिंड द्वारा विस्थापन = x मीटर
अचर बल = 5 इकाई
किया गया कार्य = बल × विस्थापन
W = F × S
इसलिए,   y = 5x
(i) जब तय दुरी 2 मात्रक है तब
x = 2 रखने पर
अत: y = 5x
⇒ y = 5(2)
⇒  y =  10
किया गया कार्य 10 मात्रक

(ii) जब तय की गई दुरी 0 मात्रक है तब
x = 0 रखने पर
⇒   y = 5(0)
⇒   y = 0
किया गया कार्य 0 मात्रक
आलेख के लिए x का मान -1, 0 और 1 रखने पर y का मान क्रमश: – 5, 0 और 5 प्राप्त होता है |
Class 9 NCERT Maths Linear Equations in Two Variables Solutions Hindi Medium 4.3 6

Ex 4.3 Class 9 गणित Q7. एक विद्यालय की कक्षा IX की छात्राएं यामिनी और फातिमा ने मिलकर भूकंप पीडि़त व्यक्तियों की सहायता के लिए प्रधानमंत्री राहत कोष में 100 रु अंशदान दिया। एक रैखिक समीकरण लिखिए जो इन आंकड़ों को संतुष्ट करती हो। (आप उनका अंशदान x रु और y रु मान सकते हैं)। इस समीकरण का आलेख खींचिए।
हल : माना यामिनी द्वारा योगदान = x रु
और फातिमा द्वारा योगदान = y रु
दोनों के द्वारा दिया गया अंशदान = 100 रु
अत: प्रश्नानुसार,
x + y = 10
y = 100 – x
समीकरण में x का मान 10, 20 और 30 रखने पर y का मान क्रमश: 90, 80 और 70 प्राप्त होता है |
NCERT Solutions For Class 9 Maths Linear Equations in Two Variables PDF Hindi Medium

Ex 4.3 Class 9 गणित Q8. अमरीका और कनाडा जैसे देशों में तापमान फारेनहाइट में मापा जाता हैजबकि भारत जैसे देशों में तापमान सेल्सियस में मापा जाता है। यहाँ फारेनहाइट को सेल्सियस में रूपांतरित करने वाला एक रैखिक समीकरण दिया गया है:
NCERT Solutions for Class 9 Maths Chapter 4 (Hindi Medium) 4.3 8
(i) सेल्सियस को x-अक्ष और फारेनहाइट को y-अक्ष मानकर ऊपर दिए गए रैखि समीकरण का आलेख खींचिए।
(ii) यदि तापमान 30°C है, तो फारेनहाइट में तापमान क्या होगा?
(iii) यदि तापमान 95°F है, तो सेल्सियस में तापमान क्या होगा?
(iv) यदि तापमान 0°C है, तो फारेनहाइट में तापमान क्या होगा? और यदि तापमान 0°F है, तो सेल्सियस में तापमान क्या होगा?
(v) क्या ऐसा भी कोई तापमान है जो फारेनहाइट और सेल्सियस दोनों के लिए संख्यात्मकत: समान है? यदि हाँ, तो उसे ज्ञात कीजिए।
हल :
Class 9th Maths NCERT Linear Equations in Two Variables Solutions Hindi Medium 4.3 8.1
इसीप्रकार x का मान 20 और 30 रखने पर y का मान 68 और 86 प्राप्त होगा जिसकी तालिका निम्न है |
>NCERT Solutions for Class 9 Maths Chapter 4 (Hindi Medium) 4.3 8.2
NCERT Maths Book Class 9 Linear Equations in Two Variables Solutions Hindi Medium 4.3 8.3
Class 9 NCERT Solutions Maths Linear Equations in Two Variables Hindi Medium 4.3 8.4
हल : (v) माना t वह तापमान है जो सेल्सियस और फारेनहाईट दोनों में संख्यात्मक रूप से समान है |
9th Class Maths NCERT Linear Equations in Two Variables Hindi Medium Solutions 4.3 8.5

प्रश्नावली 4.4

Ex 4.4 Class 9 गणित Q1.
(i) एक चर वाले
(ii) दो चर वाले
समीकरण के रूप में y = 3 का ज्यामितीय निरूपण कीजिए।
हल-
(i) एक चर वाले समीकरण के रूप में y = 3 का ज्यामितीय निरूपण :
संख्या रेखा खींचिए और उस पर 0 के दायीं ओर तीसरा चिह्न चिह्नित कीजिए।
CBSE Class 9 Maths Linear Equations in Two Variables Hindi Medium Solutions 4.4 1
अतः y = 3 की संख्या- रेखा पर यही ज्यामितीय स्थिति है।
(ii) दो चर वाले समीकरण के रूप में y = 3 को ज्यामितीय निरूपण :
(1) वर्ग पत्रक (ग्राफ पेपर) पर X-अक्ष तथा Y-अक्ष खींचकर उन पर मापन चिह्न अंकित कीजिए।
(2) Y-अक्ष पर +3 चिह्न से X-अक्ष के समान्तर रेखा AB खींचिए।
NCERT Solutions For Class 9 Maths Linear Equations in Two Variables Hindi Medium 4.4 1.1
इस रेखा पर x ( भुज) के भिन्न-भिन्न मान वाले बिन्दुओं के लिए भी y (कोटि) का मान 3 स्थिर है।
ऋजु रेखा AB अभीष्ट आलेख है।

Ex 4.4 Class 9 गणित Q2.
(i) एक चर वाले
(ii) दो चर वाले
समीकरण के रूप में 2x + 9 = 0 का ज्यामितीय निरूपण कीजिए।
हल-
(i) एक चर वाले समीकरण के रूप में 2x + 9 = 0 का ज्यामितीय निरूपण :
दिया हुआ समीकरण 2x + 9 = 0
2x = -9
x = -4\(\frac { 1 }{ 2 }\)
संख्या-रेखा खींचिए। 0 के बायीं ओर -4\(\frac { 1 }{ 2 }\) पर चिह्न लगाइए संख्या-रेखा पर 2x + 9 = 0 की यही स्थिति है।
Maths NCERT Solutions Class 9 Linear Equations in Two Variables Hindi Medium 4.4 2
(ii) दो चर वाले समीकरण के रूप में 2x + 9 = 0 का ज्यामितीय निरूपण :
(1) ग्राफ पेपर पर X-अक्ष तथा Y-अक्ष खींचकर उन पर मापक चिन्ह अंकित कीजिए।
(2) X-अक्ष पर \(\frac { -9 }{ 2 }\) या -4.5 चिह्नित (अंकित) कीजिए और इससे Y-अक्ष के समान्तर रेखा AB खींचिए।
Class 9 Maths NCERT Linear Equations in Two Variables Solutions Hindi Medium 4.4 2.1
इस रेखा पर स्थित सभी बिन्दुओं के लिए x = -4\(\frac { 1 }{ 2 }\) होगा चाहे y का मान कुछ भी हो।
ऋजु रेखा AB अभीष्ट आलेख है।

Hope given NCERT Solutions for Class 9 Maths Chapter 4 are helpful to complete your homework.

NCERT Solutions for Class 9 Maths Chapter 4 Linear Equations in Two Variables (Hindi Medium) Read More »

NCERT Solutions for Class 9 Maths Chapter 12 Heron’s Formula (Hindi Medium)

NCERT Solutions for Class 9 Maths Chapter 12 Heron’s Formula (Hindi Medium)

NCERT Solutions for Class 9 Maths Chapter 12 Heron’s Formula (हीरोन सूत्र) (Hindi Medium)

These Solutions are part of NCERT Solutions for Class 9 Maths in Hindi Medium. Here we have given NCERT Solutions for Class 9 Maths Chapter 12 Heron’s Formula.

प्रश्नावली 12.1

Ex 12.1 Class 9 गणित Q1. एक यातायात संकेत बोर्ड पर ‘आगे स्कूल है’ लिखा है और यह भुजा ‘a‘ वाले एक समबाहु त्रिभुज के आकार का है। हीरोन के सूत्र का प्रयोग करके इस बोर्ड का क्षेत्रफल ज्ञात कीजिए। यदि संकेत बोर्ड का परिमाप 180 cm है, तो इसका क्षेत्रफल क्या होगा?
NCERT Solutions for Class 9 Maths Chapter 12 (Hindi Medium) 12.1 1
 NCERT Solutions For Class 9 Maths 12.1 1.1

Ex 12.1 Class 9 गणित Q2. किसी फ्रलाईओवर (flyover) की त्रिभुजाकार दीवार को विज्ञापनों के लिए प्रयोग किया जाता है। दीवार की भुजाओं की लंबाइयाँ 122 m, 22 m और 120 m हैं (देखिए आकृति 12.9)। इस विज्ञापन से प्रति वर्ष 5000 रु प्रति m2 की प्राप्ति होती है। एक कम्पनी ने एक दीवार को विज्ञापन देने के लिए 3 महीने के लिए किराए पर लिया। उसने कुल कितना किराया दिया ?
NCERT Solutions For Class 9 Maths Hindi Medium 12.1 2
हल : a = 122 m, b = 22 m और c = 120 m
Maths NCERT Solutions Class 9 Hindi Medium 12.1 2.1

Ex 12.1 Class 9 गणित Q3. किसी पार्क में एक फिसल पट्टी (slide) बनी हुई है। इसकी पार्श्वीय दीवारों (side walls) में से एक दीवार पर किसी रंग से पेंट किया गया है और उस पर “पार्क को हरा-भरा और साफ रखिए” लिखा हुआ है । यदि इस दीवार की विमाएँ 15m, 11m और 6m हैं, तो रंग से पेंट हुए भाग का क्षेत्रफल ज्ञात कीजिए।
Class 9 Maths NCERT Solutions Hindi Medium 12.1 3

Ex 12.1 Class 9 गणित Q4. उस त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसकी दो भुजाएँ 18 cm और 10 cm हैं तथा उसका परिमाप 42 cm है।
हल :
a = 18 cm, b = 10 cm और c = ?
परिमाप = 42 cm
a + b + c = 42
या 18 + 10 + c = 42
या c = 42 – 28
या c = 14 cm
NCERT Maths Solutions For Class 9 Hindi Medium 12.1 4

Ex 12.1 Class 9 गणित Q5. एक त्रिभुज की भुजाओं का अनुपात 12: 17: 25 है और उसका परिमाप 540cm है। इस त्रिभुज का क्षेत्रफल ज्ञात कीजिए।
हल :
माना भुजाएँ a = 12x, b = 17x और c = 25x है |
अत: a + b + c = 540 cm
या  12x + 17x + 25x = 540
या 54x = 540
NCERT Solutions For Class 9 Maths Heron's Formula Hindi Medium 12.1 5
NCERT Solutions for Class 9 Maths Chapter 12 (Hindi Medium) 12.1 5.1

Ex 12.1 Class 9 गणित Q6. एक समद्विबाहु त्रिभुज का परिमाप 30 cm है और उसकी बराबर भुजाएँ 12 cm लम्बाई की हैं। इस त्रिभुज का क्षेत्रफल ज्ञात कीजिए।
हल :
दिया है : a = 12 cm, b = 12 cm और c = ?
अत: a + b + c = 30 cm
या  12 + 12 + c = 30 cm
या  c = 30 – 24 cm
या  c = 6 cm
Maths NCERT Solutions Class 9 Heron's Formula Hindi Medium 12.1 6

प्रश्नावली 12.2

Ex 12.2 Class 9 गणित Q1. एक पार्क चतुर्भुज ABCD के आकार का है, जिसमें C = 90°, AB = 9 m, BC = 12 m, CD = 5 m और AD = 8 m है। इस पार्क का कितना क्षेत्रफल है?
Class 9 Maths NCERT Heron's Formula Solutions Hindi Medium 12.2 1
हल : 
NCERT Maths Solutions For Class 9 Heron's Formula Hindi Medium 12.2 1.1
NCERT Class 9 Maths Hindi Medium Heron's Formula Solutions 12.2 1.2
= 65.04 m2

Ex 12.2 Class 9 गणित Q2. एक चतुर्भुज ABCD का क्षेत्रफल ज्ञात कीजिए, जिसमें AB = 3 cm, BC = 4 cm, CD = 4 cm, DA = 5 cm और AC = 5 cm है।
NCERT Maths Class 9 Hindi Medium Heron's Formula Solutions 12.2 2
हल :
NCERT Solutions For Maths Class 9 Heron's Formula Hindi Medium 12.2 2.1
Maths NCERT Solutions Class 9 Heron's Formula Hindi Medium 12.2 2.2
Maths NCERT Class 9 Solutions Heron's Formula Hindi Medium 12.2 2.3
अत: चतुर्भुज ABCD का क्षेत्रफल = ΔABC का क्षेत्रफल + ΔACD का क्षेत्रफल
= 7 cm2 + 9.166 cm= 15.2 cm2 (Aprox)

Ex 12.2 Class 9 गणित Q3. राधा ने एक रंगीन कागज से एक हवाईजहाज का चित्र बनाया, जैसा कि आकृति 12.15 में दिखाया गया है। प्रयोग किए गए कागज का कुल क्षेत्रफल ज्ञात कीजिए।
Maths Class 9 NCERT Solutions Hindi Medium 12.2 3
हल :
Heron's Formula Maths Solutions For Class 9 NCERT Hindi Medium 12.2 3.1
Heron's Formula Solutions For Maths NCERT Class 9 Hindi Medium 12.2 3.2
Class 9 NCERT Maths Heron's Formula Solutions Hindi Medium 12.2 3.3
हवाई जहाज का क्षेत्रफल = 2.49 cm2 + 6.5 cm2 + 1.68 cm2 + 4.5 cm2 + 4.5 cm2
= 19.67 cm2
अत: हवाई जहाज का क्षेत्रफल 19.67 cmहै ।

Ex 12.2 Class 9 गणित Q4. एक त्रिभुज और एक समांतर चतुर्भुज का एक ही आधर है और क्षेत्रफल भी एक ही है। यदि त्रिभुज की भुजाएँ 26 cm, 28 cm और 30 cm हैं तथा समांतर चतुर्भुज 28 cm के आधर पर स्थित है, तो उसकी संगत ऊँचाई ज्ञात कीजिए।
NCERT Solutions For Class 9 Maths Heron's Formula PDF Hindi Medium 12.2 4
हल :
Class 9th Maths NCERT Heron's Formula Solutions Hindi Medium 12.2 4.1
NCERT Solutions for Class 9 Maths Chapter 12 (Hindi Medium) 12.2 4.2
अब चूँकि समांतर चतुर्भुज BCDE का क्षेत्रफल ΔABC के बराबर है ।
अत:  समांतर चतुर्भुज BCDE का क्षेत्रफल = 336 cm2
या b × h = 336 cm2
या 28 × h = 336 cm2

Ex 12.2 Class 9 गणित Q5. एक समचतुर्भुजाकार घास के खेत में 18 गायों के चरने के लिए घास है। यदि इस समचतुर्भुज की प्रत्येक भुजा 30 m है और बड़ा विकर्ण 48m है, तो प्रत्येक गाय को चरने के लिए इस घास के खेत का कितना क्षेत्रफल प्राप्त होगा?
NCERT Maths Book Class 9 Heron's Formula Solutions Hindi Medium 12.2 5
हल : 
Class 9 NCERT Solutions Maths Heron's Formula Hindi Medium 12.2 5.1

Ex 12.2 Class 9 गणित Q6. दो विभिन्न रंगों के कपड़ों के 10 त्रिभुजाकार टुकड़ों को सीकर एक छाता बनाया गया है (देखिए आकृति 12.16)। प्रत्येक टुकड़े के माप 20 cm, 50 cm और 50 cm हैं। छाते में प्रत्येक रंग का कितना कपड़ा लगा है?
9th Class Maths NCERT Heron's Formula Hindi Medium Solutions 12.2 6
हल : 
CBSE Class 9 Maths Heron's Formula Hindi Medium Solutions 12.2 6.1

Ex 12.2 Class 9 गणित Q7. एक पतंग तीन भिन्न-भिन्न शेडों (shades) के कागजों से बनी है। इन्हें आकृति 12.17 में I, II और III से दर्शाया गया है। पतंग का ऊपरी भाग 32 cm विकर्ण का एक वर्ग है और निचला भाग 6 cm, 6 cm और 8 cm भुजाओं का एक समद्विबाहु त्रिभुज है। ज्ञात कीजिए कि प्रत्येक शेड का कितना कागज प्रयुक्त किया गया है।
NCERT Solutions For Class 9 Maths Heron's Formula Hindi Medium 12.2 7
हल : 
Maths NCERT Solutions Class 9 Heron's Formula Hindi Medium 12.2 7.1
भाग I का क्षे० = 256 cm2
भाग II का क्षे० = 256 cm2
भाग III का क्षे० = 17.92 cm2

Ex 12.2 Class 9 गणित Q8. फर्श पर एक फूलों का डिज़ाइन 16 त्रिभुजाकार टाइलों से बनाया गया हैजिनमें से प्रत्येक की भुजाएँ 9 cm28 cm और 35 cm हैं (देखिए आकृति 12.18)। इन टाइलों को 50 पैसे प्रति cm2 की दर से पालिश कराने का व्यय ज्ञात कीजिए।
Class 9 Maths NCERT Heron's Formula Solutions Hindi Medium 12.2 8
हल :
NCERT Maths Solutions For Class 9 Heron's Formula Hindi Medium 12.2 8.1
= 36 × 2.45 = 88.2 cm2
अत: इन सभी 16 टाइल्स का क्षेत्रफल = 88.2 × 16
= 1411.2 cm2
टाइलों पर पॉलिश कराने का खर्च = 1411.2 × 0.50
= 705.60 रुपये ।

Ex 12.2 Class 9 गणित Q9. एक खेत समलंब के आकार का है जिसकी समांतर भुजाएँ 25 m और 10 m हैं। इसकी असमांतर भुजाएँ 14 m और 13 m हैं। इस खेत का क्षेत्रफल ज्ञात कीजिए।
NCERT Class 9 Maths Hindi Medium Heron's Formula Solutions 12.2 9
हल : 
AB के बराबर भुजा BC पर DE काटा
अत: DE = 10 m
इसलिए, EC = DC – DE
= 25 – 10 = 15 m
अब चूँकि AB = DE है और AB || DE इसलिए ABED एक समांतर चतुर्भुज है |
अत: AD = BE = 14 m
DBCE में,
a = 14 m, b = 15 m और c = 13 m
NCERT Maths Class 9 Hindi Medium Heron's Formula Solutions 12.2 9.1
NCERT Solutions For Maths Class 9 Heron's Formula Hindi Medium 12.2 9.2

Hope given NCERT Solutions for Class 9 Maths Chapter 12 are helpful to complete your homework.

NCERT Solutions for Class 9 Maths Chapter 12 Heron’s Formula (Hindi Medium) Read More »

NCERT Solutions for Class 9 Maths Chapter 3 Coordinate Geometry (Hindi Medium)

NCERT Solutions for Class 9 Maths Chapter 3 Coordinate Geometry (Hindi Medium)

NCERT Solutions for Class 9 Maths Chapter 3 Coordinate Geometry (निर्देशांक ज्यामिति) (Hindi Medium)

These Solutions are part of NCERT Solutions for Class 9 Maths in Hindi Medium. Here we have given NCERT Solutions for Class 9 Maths Chapter 3 Coordinate Geometry.

प्रश्नावली 3.1

Ex 3.1 Class 9 गणित Q1. एक अन्य व्यक्ति को आप अपने अध्ययन मेज पर रखे टेबल लैंप की स्थिति किस तरह बताएँगे?
NCERT Solutions For Class 9 Maths Coordinate Geometry Hindi Medium 3.1 1
हल : माना कि टेबल लैंप सामने (बैठने वाली जगह) से 2 फीट है और और दायें किनारे से 1 फीट है तो लैंप की स्थिति (2,1) होगी !

Ex 3.1 Class 9 गणित Q2. (सड़क योजना) : एक नगर में दो मुख्य सड़कें हैं, जो नगर के केंद्र पर मिलती हैं। ये दो सड़कें उत्तर-दक्षिण की दिशा और पूर्व-पश्चिम की दिशा में हैं। नगर की अन्य सभी सड़कें इन मुख्य सड़कों के समांतर परस्पर 200 मीटर की दूरी पर हैं। प्रत्येक दिशा में लगभग पाँच सड़कें हैं। 1 सेंटीमीटर = 200 मीटर का पैमाना लेकर अपनी नोट बुक में नगर का एक मॉडल बनाइए। सड़कों को एकल रेखाओं से निरूपित कीजिए।

आपके मॉडल में एक-दूसरे को काटती हुई अनेक क्रॉस-स्ट्रीट (चौराहे) हो सकती हैं। एक विशेष क्रॉस-स्ट्रीट दो सड़कों से बनी है, जिनमें से एक उत्तर-दक्षिण दिशा में जाती है और दूसरी पूर्व-पश्चिम की दिशा में। प्रत्येक क्रॉस-स्ट्रीट का निर्देशन इस प्रकार किया जाता हैः यदि दूसरी सड़क उत्तर-दक्षिण दिशा में जाती है और पाँचवीं सड़क पूर्व-पश्चिम दिशा में जाती है और ये एक क्रॉसिंग पर मिलती हैं,  तब इसे हम क्रॉस-स्ट्रीट (2, 5) कहेंगे। इसी परंपरा से यह ज्ञात कीजिए कि
(i) कितनी क्रॉस-स्ट्रीटों को (4, 3) माना जा सकता है।
(ii) कितनी क्रॉस-स्ट्रीटों को (3, 4) माना जा सकता है।
हल- नगर का मॉडल
सड़क योजना को निम्नलिखित चित्र द्वारा दर्शाया गया है-
Maths NCERT Solutions Class 9 Coordinate Geometry Hindi Medium 3.1 2
(i) मॉडल से स्पष्ट है कि केवल एक-ही (unique) क्रॉस-स्ट्रीट है जिसको (4, 3) माना जा सकता है।
(ii) मॉडल से स्पष्ट है कि केवल एक ही (unique) क्रॉस-स्ट्रीट है जिसको (3, 4) माना जा सकता है।

प्रश्नावली 3.2

Ex 3.2 Class 9 गणित Q1. निम्नलिखित प्रश्नों में से प्रत्येक प्रश्न का उत्तर दीजिएः
(i) कार्तीय तल में किसी बिन्दु की स्थिति निर्धरित करने वाली क्षैतिज और उर्ध्वाधर रेखाओं के क्या नाम हैं?

(ii) इन दो रेखाओं से बने तल के प्रत्येक भाग के नाम बताइए।
(iii) उस बिन्दु का नाम बताइए जहाँ ये दो रेखाएँ प्रतिच्छेदित होती हैं।

हल : 
(i) क्षैतिज रेखा का नाम : x-अक्ष और उर्ध्वाधर रेखा का नाम : y-अक्ष
(ii) x-अक्ष और y-अक्ष से बने तल के प्रत्येक भाग का नाम :
(a) प्रथम चतुर्थांश
(b) द्वितीय चतुर्थांश
(c) तृतीय चतुर्थांश
(d) चतुर्थ चतुर्थांश
(iii) मूल बिंदु जिसका निर्देशांक (0,0) होता है |

Ex 3.2 Class 9 गणित Q2. आकृति 3.14 देखकर निम्नलिखित को लिखिए : 
(i) B के निर्देशांक 
(ii) C के निर्देशांक 
(iii) निर्देशांक (-3, -5) द्वारा पहचाना गया बिंदु 
(iv) निर्देशांक (2, -4) द्वारा पहचाना गया बिंदु
(v) D का भुज 
(vi) बिंदु H के निर्देशांक 
(vii) बिंदु L के निर्देशांक 
(viii) बिंदु M के निर्देशांक 
Class 9 Maths NCERT Coordinate Geometry Solutions Hindi Medium 3.2 2
हल : 
(i) (-5, 2)
(ii) (5, -5)
(iii) E
(iv) G
(v) 6
(vi) (-5, -3)
(vii) (0, 5)
(viii) (-3, 0)

प्रश्नावली 3.3

Ex 3.3 Class 9 गणित Q1. किस चतुर्थांश में या किस अक्ष पर बिन्दु (– 2, 4), (3, – 1), (– 1, 0), (1, 2) और (– 3, – 5) स्थित हैं? कार्तीय तल पर इनका स्थान निर्धरण करके अपने उत्तर सत्यापित कीजिए।
हल : 
(-2, 4) द्वितीय चतुर्थांश में है |
(3, -1) चतुर्थ चतुर्थांश में है |
(-1, 0) x – अक्ष पर स्थित है |
(1, 2) प्रथम चतुर्थांश में स्थित है |
(-3, -5) तृतीय चतुर्थांश में स्थित है |
NCERT Maths Solutions For Class 9 Coordinate Geometry Hindi Medium 3.3 1

Ex 3.3 Class 9 गणित Q2. अक्षों पर दूरी का उपयुक्त एकक लेकर नीचे सारणी में दिए गए बिन्दुओं को तल पर आलेखित कीजिएः
NCERT Class 9 Maths Hindi Medium Coordinate Geometry Solutions 3.3 2
हल-
माना 1 इकाई = 1 सेमी, तब कार्तीय तल में दिए गए बिन्दुओं की स्थितियों का आलेखन नीचे दिए गए चित्र में प्रदर्शित किया गया है।
NCERT Maths Class 9 Hindi Medium Coordinate Geometry Solutions 3.3 2

Hope given NCERT Solutions for Class 9 Maths Chapter 3 are helpful to complete your homework.

NCERT Solutions for Class 9 Maths Chapter 3 Coordinate Geometry (Hindi Medium) Read More »

NCERT Solutions for Class 9 Maths Chapter 10 Circles (Hindi Medium)

NCERT Solutions for Class 9 Maths Chapter 10 Circles (Hindi Medium)

NCERT Solutions for Class 9 Maths Chapter 10 Circles (वृत्त) (Hindi Medium)

These Solutions are part of NCERT Solutions for Class 9 Maths in Hindi Medium. Here we have given NCERT Solutions for Class 9 Maths Chapter 10 Circles.

प्रश्नावली 10.1 

Ex 10.1 Class 9 गणित Q1. खाली स्थान भरिए:
(i) वृत्त का केन्द्र वृत्त के ……………….. में स्थित है (बहिर्भाग/अभ्यंतर)।
(ii) एक बिन्दु, जिसकी वृत्त के केन्द्र से दूरी त्रिज्या से अधिक हो, वृत्त के ……………….. स्थित होता है (बहिर्भाग/अभ्यंतर)।
(iii) वृत्त की सबसे बड़ी जीवा वृत्त का ………………. होता है।
(iv) एक चाप …………….. होता है, जब इसके सिरे एक व्यास के सिरे हों।
(v) वृत्तखंड एक चाप तथा ……………… के बीच का भाग होता है।
(vi) एक वृत्त, जिस तल पर स्थित है, उसे ……………. भागों में विभाजित करता है।
उत्तर : 
(i) अभ्यंतर
(ii) बहिर्भाग
(iii) ब्यास
(iv) अर्धवृत
(v) जीवा
(vi) अनंत

Ex 10.1 Class 9 गणित Q2. लिखिए, सत्य या असत्य। अपने उत्तर के कारण दीजिए।
(i) केन्द्र को वृत्त पर किसी बिन्दु से मिलाने वाला रेखाखंड वृत्त की त्रिज्या होती है।
(ii) एक वृत्त में समान लंबाई की परिमित जीवाएँ होती हैं।
(iii) यदि एक वृत्त को तीन बराबर चापों में बाँट दिया जाए, तो प्रत्येक भाग दीर्घ चाप होता है।
(iv) वृत्त की एक जीवा, जिसकी लम्बाई त्रिज्या से दो गुनी हो, वृत्त का व्यास है।
(v) त्रिज्यखंड, जीवा एवं संगत चाप के बीच का क्षेत्र होता है।
(vi) वृत्त एक समतल आकृति है।
उत्तर: 
(i) सत्य
(ii) सत्य
(iii) असत्य
(iv) सत्य
(v) असत्य
(vi) सत्य

प्रश्नावली 10.2

Ex 10.2 Class 9 गणित Q1. याद कीजिए कि दो वृत्त सर्वांगसम होते हैं, यदि उनकी त्रिज्याएँ बराबर हों। सिद्ध कीजिए कि सर्वांगसम वृत्तों की बराबर जीवाएँ उनके केन्द्रों पर बराबर कोण अंतरित करती हैं।
हल :
NCERT Solutions For Class 9 Maths Circles Hindi Medium 10.2 1
दिया है : O और O’ वाले दो सर्वांगसम
वृत्त हैं जिनकी बराबर जीवाएं AB = PQ है |
सिद्ध करना है :
∠AOB = ∠PO’Q है |
प्रमाण : ΔAOB तथा ΔPO’Q में
AO = PO’ (सर्वांगसम वृत्त की त्रिज्या बराबर होती है)
BO = QO’ (सर्वांगसम वृत्त की त्रिज्या)
AB = PQ (दिया है)
SSS सर्वांगसमता नियम से
ΔAOB  ΔPO’Q
अत:  ∠AOB = ∠PO’Q  (BY CPCT)
Proved.

Ex 10.2 Class 9 गणित Q2. सिद्ध कीजिए कि यदि सर्वांगसम वृत्तों की जीवाएँ उनके केन्द्रों पर बराबर कोण अंतरित करें, तो जीवाएँ बराबर होती हैं।
हल :
NCERT Solutions for Class 9 Maths Chapter 10 (Hindi Medium) 10.2 2
दिया है : O और O’ वाले दो सर्वांगसम
वृत्त हैं जिनमें ∠AOB = ∠PO’Q है|
सिद्ध करना है :
AB = PQ है|
प्रमाण : ΔAOB तथा ΔPO’Q में
AO = PO’ (सर्वांगसम वृत्त की त्रिज्या बराबर होती है)
BO = QO’ (सर्वांगसम वृत्त की त्रिज्या)
∠AOB = ∠PO’Q (दिया है)
SSS सर्वांगसमता नियम से
ΔAOB  ΔPO’Q
अत:AB = PQ  (BY CPCT)
Proved.

प्रश्नावली 10.3

Ex 10.3 Class 9 गणित Q2. मान लीजिए आपको एक वृत्त दिया है। एक रचना इसके केंद्र को ज्ञात करने के लिए दीजिए।
हल : रचना के पद :
Maths NCERT Solutions Class 9 Circles Hindi Medium 10.3 2
(i) दिया हुआ बिना केंद्र वाला एक खिंचा |
(ii) वृत्त पर तीन असंरेखी बिन्दुएँ A, B तथा C डाला और A को B से और B को C से मिलाया |
(iii) रेखाखंड AB और BC का लंब समद्विभाजक खिंचा जो एक दुसरे को बिंदु O पर प्रतिच्छेद करते हैं |
(iv) बिंदु O ही दिए गए वृत्त का अभीष्ट केंद्र है |

Ex 10.3 Class 9 गणित Q3. यदि दो वृत्त परस्पर दो बिन्दुओं पर प्रतिच्छेद करें, तो सिद्ध कीजिए कि उनके केंद्र उभयनिष्ठ जीवा के लम्ब समद्विभाजक पर स्थित हैं।
हल :
दिया है : O और O’ वाले दो वृत्त एक
दुसरे को बिन्दुओं A और B पर प्रतिच्छेद करती हैं |
अत: उभयनिष्ठ जीवा AB है |
दिया है : O और O’ वाले दो वृत्त एक
दुसरे को बिन्दुओं A और B पर प्रतिच्छेद करती हैं |
अत: उभयनिष्ठ जीवा AB है |
NCERT Solutions for Class 9 Maths Chapter 10 (Hindi Medium) 10.3 3
Class 9 Maths NCERT Circles Solutions Hindi Medium 10.3 3.1
NCERT Maths Solutions For Class 9 Circles Hindi Medium 10.3 3.2
अब चूँकि AB एक सरल रेखा है |

प्रश्नावली 10.4

Ex 10.4 Class 9 गणित Q1. 5 cm तथा 3 cm त्रिज्या वाले दो वृत्त दो बिन्दुओं पर प्रतिच्छेद करते हैं तथा उनके केन्द्रों बीच की दूरी 4 cm है। उभयनिष्ठ जीवा की लम्बाई ज्ञात कीजिए।
हल :
NCERT Class 9 Maths Hindi Medium Circles Solutions 10.4 1
AO = 5 cm
AO’ = 3 cm
OO’ = 4 cm
AB = ?
NCERT Maths Class 9 Hindi Medium Circles Solutions 10.4 1.1

Ex 10.4 Class 9 गणित Q2. यदि एक वृत्त की दो समान जीवाएँ वृत्त के अन्दर प्रतिच्छेद करेंतो सिद्ध कीजिए कि एकजीवा के खंड दूसरी जीवा के संगत खंडों के बराबर हैं।
हल :
NCERT Solutions For Maths Class 9 Circles Hindi Medium 10.4 2
दिया है : O केंद्र वाले वृत्त की दो बराबर
जीवाएं AB तथा CD हैं | जो एक दुसरे को
बिंदु E पर प्रतिच्छेद करती हैं |
सिद्ध करना है : AE = CE और BE = DE है |
रचना : O से M तथा N को मिलाया |
Maths NCERT Solutions Class 9 Circles Hindi Medium 10.4 2.1
Maths NCERT Class 9 Solutions Circles Hindi Medium 10.4 2.2
या    AM = CN   …… (2)
या    BM = DN   ……. (3)
अब समीकरण (2) में से (1) घटाने पर
AM – EM = CN – EN
या  AE = CE  Proved (i)
अब समीकरण (3) में (1) जोड़ने पर
BM + EM = DN + EN
या  BE = DE Proved (ii)
अत: AE = CE और BE = DE है |
इसलिए जीवा के संगत अंत:खंड बराबर हैं |

Ex 10.4 Class 9 गणित Q3. यदि एक वृत्त की दो समान जीवाएँ वृत्त के अन्दर प्रतिच्छेद करेंतो सिद्ध कीजिए कि प्रतिच्छेद बिन्दु को केंद्र से मिलाने वाली रेखा जीवाओं से बराबर कोण बनाती है।
हल :
Maths NCERT Class 9 Solutions Circles Hindi Medium 10.4 3
दिया है : O केंद्र वाले वृत्त की दो बराबर जीवायें
AB तथा CD वृत्त के अन्दर बिंदु E पर
प्रतिच्छेद करती हैं |
रचना : E को केंद्र O से मिलाया |
Maths Class 9 NCERT Solutions Hindi Medium 10.4 3.1

Ex 10.4 Class 9 गणित Q4. यदि एक रेखा दो संकेंद्री वृतों (एक ही केंद्र वाले वृत्त) को, जिनका केंद्र O है, A, B, C और D पर प्रतिच्छेद करे, तो सिद्ध कीजिए AB = CD है |
हल :
Circles Maths Solutions For Class 9 NCERT Hindi Medium 10.4 4
दिया है : दो संकेंद्री वृत्त जिनका केंद्र O है |
Circles Solutions For Maths NCERT Class 9 Hindi Medium 10.4 4.1
Class 9 NCERT Maths Circles Solutions Hindi Medium 10.4 4.2
एक रेखा वृत्त को A, B, C और D पर प्रतिच्छेद करती हैं |

Ex 10.4 Class 9 गणित Q5. एक पार्क में बने 5 m त्रिज्या वाले वृत्त पर खड़ी तीन लड़कियाँ रेशमासलमा एवं मनदीप खेल रही हैं। रेशमा एक गेंद को सलमा के पाससलमा मनदीप के पास तथा मनदीप रेशमा के पास फेंकती है। यदि रेशमा तथा सलमा के बीच और सलमा तथा मनदीप के बीच की प्रत्येक दूरी 6 m होतो रेशमा और मनदीप के बीच की दूरी क्या है?
हल :
NCERT Solutions For Class 9 Maths Circles PDF Hindi Medium 10.4 5
वृत्त का केंद्र O और और माना कि वृत्त पर
रेशमा (R), सलमा (S) और मनदीप (M) है |
RS = 6 m, SM = 6 m और RM = ?
OR = OS = 5 cm है |
ΔROS  में,
a = 5 cm, b = 5cm और c = 6 cm
Class 9th Maths NCERT Circles Solutions Hindi Medium 10.4 5.1
RM = 2 × RN
RM = 2 × 4.8 = 9.6 m
अत: रेशमा और मनदीप की बीच की दुरी 9.6 है |

Ex 10.4 Class 9 गणित Q6. 20 m त्रिज्या का एक गोल पार्क (वृत्ताकार) एक कालोनी में स्थित है। तीन लड़के अंकुरसैयद तथा डेविड इसकी परिसीमा पर बराबर दूरी पर बैठे हैं और प्रत्येक के हाथ में एक खिलौना टेलीफोन आपस में बात करने के लिए है। प्रत्येक फोन की डोरी की लम्बाई ज्ञात कीजिए।
हल :
NCERT Solutions for Class 9 Maths Chapter 10 (Hindi Medium) 10.4 6
माना अंकुर की स्थिति A, सैयद की S और डेविड की D है |
अत: फोन की डोरी की लंबाई AS = SD = AD = x m है |
वृत्त की त्रिज्या AO = OS = OD = 20 m है |
NCERT Maths Book Class 9 Circles Solutions Hindi Medium 10.4 6.1
Class 9 NCERT Solutions Maths Circles Hindi Medium 10.4 6.2
Class 9 NCERT Solutions Maths Circles Hindi Medium 10.4 6.3
NCERT Solutions for Class 9 Maths Chapter 10 (Hindi Medium) 10.4 6.4

प्रश्नावली 10.5

Ex 10.5 Class 9 गणित Q1. आकृति 10.36 में, केंद्र O वाले एक वृत्त पर तीन बिंदु A, B और C इस प्रकार हैं कि BOC = 30 तथा AOB = 60 है | यदि चाप ABC के अतिरिक्त वृत्त पर D एक बिंदु है, रो ADC ज्ञात कीजिए |
हल :
9th Class Maths NCERT Circles Hindi Medium Solutions 10.5 1
∠AOC = 2 ∠ADC  (प्रमेय 10.8 से )
[ एक चाप द्वारा वृत्त के केंद्र पर अंतरित कोण वृत्त के शेष भाग के किसी बिंदु पर अंतरित कोण का दुगुना होता है | ]
NCERT Solutions for Class 9 Maths Chapter 10 (Hindi Medium) 10.5 1.1

Ex 10.5 Class 9 गणित Q2. किसी वृत्त की एक जीवा वृत्त की त्रिज्या के बराबर है | जीवा द्वारा लघु चाप के किसी बिंदु पर अंतरित कोण ज्ञात कीजिए तथा दीर्घ चाप के किसी बिंदु पर भी अंतरित कोण ज्ञात कीजिए |
हल : 
CBSE Class 9 Maths Circles Hindi Medium Solutions 10.5 2
चाप AB त्रिज्याएँ OA तथा OB के बराबर है |
इसलिए ΔAOB एक समबाहु त्रिभुज है |
अत: ∠AOB = 60 (समबाहु त्रिभुज के प्रत्येक कोण)
अब, ∠AOB = 2∠APB
वृत्त के केंद्र पर बना कोण शेष वृत्त पर बने कोण का दुगुना होता है)
या    60 = 2∠APB
NCERT Solutions for Class 9 Maths Chapter 10 (Hindi Medium) 10.5 2.1

Ex 10.5 Class 9 गणित Q3. आकृति 10.37 में, ∠PQR = 100 है, जहाँ P, Q तथा R केंद्र O वाले एक वृत्त पर स्थित बिंदु हैं | ∠OPR ज्ञात कीजिए |
हल : 
NCERT Solutions For Class 9 Maths Circles Hindi Medium 10.5 3
दिया है – ∠PQR = 100 है |
चूँकि (वृत्त के केंद्र पर बना कोण शेष वृत्त पर बने कोण का दुगुना होता है)
इसलिए ∠POR = 2 ∠PQR
या ∠POR = 2 × 100
या ∠POR = 200
अब प्रतिवर्ती ∠POR = 360 – 200
या  प्रतिवर्ती ∠POR = 160
ΔPOR में, PO = RO (एक ही वृत्त की त्रिज्या)
इसलिए ∠OPR = ∠ORP  ……..(1) (बराबर भुजाओं के सम्मुख कोण बराबर होते हैं)
अब,  ∠OPR + ∠ORP + ∠POR = 180  (तीनों कोणों का योग)
या ∠OPR + ∠OPR + 160 = 180  समी० (1) से
या 2 ∠OPR = 180 – 160
या 2 ∠OPR = 20
Maths NCERT Solutions Class 9 Circles Hindi Medium 10.5 3.1

Ex 10.5 Class 9 गणित Q4. आकृति 10.38 में, ∠ABC = 69 और ∠ACB = 31 हो, तो ∠BDC ज्ञात कीजिए |
हल : 
Class 9 Maths NCERT Circles Solutions Hindi Medium 10.5 4
ΔABC में,
∠ABC + ∠ACB + ∠BAC = 180 (त्रिभुज के तीनों का योग)
या 69 + 31 + ∠BAC = 180
या 100 + ∠BAC = 180
या ∠BAC = 180 – 100
या ∠BAC = 80
अब चूँकि ∠BAC = ∠BDC
इसलिए, ∠BDC = 80

Ex 10.5 Class 9 गणित Q5. आकृति 10.39 में, एक वृत्त पर A, B, C और D चार बिंदु हैं | AC और BD एक बिंदु E पर इस प्रकार प्रतिच्छेद करते हैं कि BEC = 130° तथा ECD = 20° है | BAC ज्ञात कीजिए |
हल : 
NCERT Maths Solutions For Class 9 Circles Hindi Medium 10.5 5
BED एक सरल रेखा है |
इसलिए, ∠BEC + ∠CED = 180 (रैखिक युग्म)
या 130° + ∠CED = 180
या ∠CED = 180 – 130°
या ∠CED = 50°
अब    ∠BAC = ∠CED [क्योंकि एक ही वृत्त खंड में बने कोण बराबर होते हैं]
इसलिए ∠BAC = 50°

Ex 10.5 Class 9 गणित Q6. ABCD एक चक्रीय चतुर्भुज है जिसके विकर्ण एक बिन्दु E पर प्रतिच्छेद करते हैं। यदि DBC = 70° और BAC = 30° हो, तो BCD ज्ञात कीजिए। पुनः यदि AB = BC हो, तो  ECD ज्ञात कीजिए 
हल : 
NCERT Class 9 Maths Hindi Medium Circles Solutions 10.5 6
दिया है कि ∠DBC = 70° और ∠BAC = 30° है |
अब,  ∠BAC = ∠BDC [एक ही वृत्त खंड में बने कोण बराबर होते हैं]
इसलिए, ∠BDC = 30°  …… (1)
अब DBCD में,
∠BDC = 30°, ∠DBC = 70° और ∠BCD = ?
अब  ∠BDC + ∠DBC + ∠BCD = 180° [त्रिभुज के तीनों कोणों का योग]
या 30° + 70° + ∠BCD = 180°  समी० (1) से
या 100° + ∠BCD = 180°
या ∠BCD = 180° – 100°
या ∠BCD = 80°
अब, AB = BC दिया है
इसलिए, ∠BAC = ∠BCA …… (2) [बराबर भुजाओं के सम्मुख कोण बराबर होते हैं]
अब चूँकि ∠BAC = 30° है |
इसलिए ∠BCA = 30°  समी० (2) से
या ∠ECB = 30°
चूँकि  ∠BCD = 80° है |
या ∠ECB + ∠ECD = 80°
या 30° + ∠ECD = 80°
या ∠ECD = 80° – 30°= 50°
अत: ∠ECD = 50° और ∠BCD = 80° है |

Ex 10.5 Class 9 गणित Q7. यदि एक चक्रीय चतुर्भुज के विकर्ण उसके शीर्षों से जाने वाले वृत्त के व्यास होंतो सिद्ध कीजिए कि वह एक आयत है।
हल :
NCERT Solutions for Class 9 Maths Chapter 10 (Hindi Medium) 10.5 7
दिया है : ABCD एक चक्रीय चतुर्भुज है
जिसके विकर्ण AC तथा BD बिंदु O पर
प्रतिच्छेद करते हैं ।
सिद्ध करना है : ABCD एक आयत है ।
प्रमाण : ΔAOB तथा ΔCOD में
OA = OC (एक ही वृत्त कि त्रिज्यायें)
OB = OD (एक ही वृत्त कि त्रिज्यायें)
∠AOB = ∠COD (शिर्षाभिमुख कोण)
SAS सर्वांगसमता नियम से
ΔAOB  ΔCOD
अत: AB = CD  ….(1)  (By CPCT)
और ∠BAO = ∠DCO एकांतर कोण
अत: AB ॥ CD …(2)
समी० (1) तथा (2) से
ABCD एक समांतर चतुर्भुज है ।
अब BD विकर्ण वृत्त का ब्यास है (दिया है)
इसलिए ∠A = 90° तथा ∠C = 90° है । [अर्धवृत्त में बना कोण 90° होता है]
अत: ABCD एक आयात है ।
(वह समांतर चतुर्भुज जिसका एक कोण समकोण हो वह आयत कहलाता है)

Ex 10.5 Class 9 गणित Q8. यदि एक समलंब की असमांतर भुजाएँ बराबर होंतो सिद्ध कीजिए कि वह चक्रीय है।
हल :
NCERT Solutions for Class 9 Maths Chapter 10 (Hindi Medium) 10.5 8
दिया है : ABCD एक समलंब है जिसमें
AB || CD है और AD = BC है |
सिद्ध करना है :
ABCD एक चक्रीय चतुर्भुज है |
प्रमाण : ΔACD तथा ΔBDC में
AD = BC (दिया है)
DC = DC (दिया है)
∠DAC = ∠CBD (एक ही वृत्त खंड में बने कोण)
SAS सर्वांगसमता नियम से
ΔACD  ΔBDC
अत:     ∠D = ∠C ….. (1)  By CPCT
अब चूँकि AB || CD दिया है
इसलिए, ∠A + ∠D = 180° (अत: आसन्न कोणों का योग)
या      ∠A + ∠C = 180°  समी० (1)से
अत: ABCD एक चक्रीय चतुर्भुज है|
Proved.

Ex 10.5 Class 9 गणित Q9.  दो वृत्त दो बिन्दुओं B और C पर प्रतिच्छेद करते हैं । B से जाने वाले दो रेखाखंड ABD और PBQ वृतों को A, D और P, Q पर क्रमश: प्रतिछेद करते हुए खींचे गए हैं । सिद्ध कीजिए कि ACP = QCD है |
हल :   
NCERT Solutions for Class 9 Maths Chapter 10 (Hindi Medium) 10.5 9
सिद्ध करना है : ∠ACP = ∠QCD
प्रमाण :
चाप AP बने कोण ∠ABP तथा ∠ACP हैं |
अत:  ∠ABP = ∠ACP  ……….. (1)[एक ही वृत्त खंड में बने कोण]
अब,  ∠ABP = ∠QBD  ……….. (2)[शिर्षाभिमुख कोण]
समीकरण (1) तथा (2) से
∠ACP = ∠QBD ……….. (3)
पुन:   ∠QCD = ∠QBD ………. (4) [एक ही वृत्त खंड में बने कोण]
अत: समीकरण (3) तथा (4) से
∠ACP = ∠QCD
Proved.

Ex 10.5 Class 9 गणित Q10. यदि किसी त्रिभुज की दो भुजाओं को व्यास मानकर वृत्त खींचे जाएँतो सिद्ध कीजिए कि इन वृत्तों का प्रतिच्छेद बिन्दु तीसरी भुजा पर स्थित है।
हल :  
NCERT Solutions for Class 9 Maths Chapter 10 (Hindi Medium) 10.5 10
दिया है : ABC एक त्रिभुज है जिसकी भुजाओं
AB तथा AC को व्यास मानकर O तथा O’ वाले
दो वृत्त खिंचा है | उभयनिष्ठ जीवा AD है |
सिद्ध करना है : बिंदु D BC पर स्थित है |
प्रमाण : AB O केंद्र वाले वृत्त का व्यास है |
अत: ∠ADB = 90° ………. (1) (अर्धवृत में बना कोण समकोण होता है)
अब, AC O’ वाले वृत्त का व्यास है ।
अत: ∠ADC = 90° ………. (2) (अर्धवृत में बना कोण समकोण होता है)
समीकरण (1) तथा (2) जोड़ने पर
∠ADB + ∠ADC = 90° + 90°
या    ∠ADB + ∠ADC = 180°  [रैखिक युग्म]
अत: BDC एक सरल रेखा है जिसपर बिंदु D स्थित है|
Proved.

Ex 10.5 Class 9 गणित Q11. उभयनिष्ठ कर्ण AC वाले दो समकोण त्रिभुज ABC और ADC हैं। सिद्ध कीजिए कि ∠CAD = ∠CBD है।
NCERT Solutions for Class 9 Maths Chapter 10 (Hindi Medium) 10.5 11
हल-
दिया है: ∆ABC और ∆ADC दो समकोण त्रिभुज हैं जिनका कर्ण AC उभयनिष्ठ है। रेखाखण्ड BD खींचा गया है।
सिद्ध करना है: ∠CAD = ∠CBD
रचना : AC को व्यास मानकर वृत्त खींचा।
उपपत्ति: चूँकि ∆ABC समकोण त्रिभुज है जिसका कर्ण AC है।
∠B = 90°
पुनः ∆ADC समकोण त्रिभुज है जिसका कर्ण AC है।
∠D = 90°
तब चतुर्भुज ABCD में, ∠B + ∠D = 180° (चक्रीय चतुर्भुज के सम्मुख कोण सम्पूरक होते हैं)
ABCD चक्रीय चतुर्भुज है।
बिन्दु A, B,C और D एक वृत्त पर हैं। चूँकि ∠CAD और ∠CBD एक ही वृत्तखण्ड के कोण हैं।
अतः ∠CAD = ∠CBD
इति सिद्धम्.

Ex 10.5 Class 9 गणित Q12. सिद्ध कीजिए कि चक्रीय समान्तर चतुर्भुज एक आयत होता है।
NCERT Solutions for Class 9 Maths Chapter 10 (Hindi Medium) 10.5 12
हल-
दिया है : समान्तर चतुर्भुज ABCD एक चक्रीय चतुर्भुज है।
सिद्ध करना है : चतुर्भुज ABCD एक आयत है।
उपपत्ति : ABCD एक चक्रीय चतुर्भुज है,
∠A + ∠C = 180° ……(1)
परन्तु समान्तर चतुर्भुज के सम्मुख कोण बराबर होते हैं।
∠A = ∠C ……(2)
अतः समीकरण (1) व (2) से,
∠A = ∠C = 90°
इसी प्रकार, ∠B = ∠D = 90°
ABCD का प्रत्येक अन्त:कोण 90° के बराबर है।
अत: ABCD एक आयत है। .
इति सिद्धम्

प्रश्नावली 10.6 (ऐच्छिक)

Ex 10.6 Class 9 गणित Q1. सिद्ध कीजिए कि दो प्रतिच्छेद करते हुए वृत्तों के केन्द्रों की रेखा दोनों प्रतिच्छेद बिन्दुओं पर समान कोण अन्तरित करती है।
NCERT Solutions for Class 9 Maths Chapter 10 (Hindi Medium) 10.6 1
हल-
दिया है: O1 तथा O2 केन्द्रों वाले दो वृत्त एक-दूसरे को दो बिन्दुओं A तथा B पर प्रतिच्छेद करते हैं। केन्द्र रेखा O1O2 प्रतिच्छेद बिन्दु A पर ∠O1AO2 तथा B पर ∠O1BO2 अन्तरित करती है।
सिद्ध करना है: ∠O1AO2 तथा ∠O1BO2 समान हैं।
उपपत्ति: ∆O1AO2 तथा ∆O1BO2 में,
O1A = O1B (एक ही वृत्त की त्रिज्याएँ)
O2A = O2B (एक ही वृत्त की त्रिज्याएँ)
O1O2 = O1O2 (उभयनिष्ठ)
∆O1AO2 = ∆O1BO2 (भुजा-भुजा-भुजा सर्वांगसमता से)
∠O1AO2 = ∠O1BO2 (सर्वांगसम त्रिभुजों के संगत कोण)

Ex 10.6 Class 9 गणित Q2. एक वृत्त की 5 सेमी तथा 11 सेमी लम्बी दो जीवाएँ AB और CD समान्तर हैं और केन्द्र की विपरीत दिशा में स्थित हैं। यदि AB और CD के बीच की दूरी 6 सेमी हो तो वृत्त की त्रिज्या ज्ञात कीजिए।
NCERT Solutions for Class 9 Maths Chapter 10 (Hindi Medium) 10.6 2
हल-
दिया है : O त्रिज्या का एक वृत्त है जिसमें AB तथा CD दो समान्तर जीवाएँ केन्द्र O के विपरीत ओर स्थित हैं जिनकी लम्बाइयाँ क्रमशः 5 सेमी व 11 सेमी हैं। जीवाओं के बीच की (लाम्बिक) दूरी 6 सेमी है अर्थात् MON = 6 सेमी जबकि MON ⊥ AB व MON ⊥ CD
NCERT Solutions for Class 9 Maths Chapter 10 (Hindi Medium) 10.6 2.1
NCERT Solutions for Class 9 Maths Chapter 10 (Hindi Medium) 10.6 2.2
NCERT Solutions for Class 9 Maths Chapter 10 (Hindi Medium) 10.6 2.3

Ex 10.6 Class 9 गणित Q3. किसी वृत्त की दो समान्तर जीवाओं की लम्बाइयाँ 6 सेमी और 8 सेमी हैं। यदि छोटी जीवा केन्द्र से 4 सेमी की दूरी पर हो तो दूसरी जीवा केन्द्र से कितनी दूर है?
NCERT Solutions for Class 9 Maths Chapter 10 (Hindi Medium) 10.6 3
हल-
दिया है : O केन्द्र वाले किसी वृत्त की दो समान्तर जीवाओं AB व CD की लम्बाइयाँ क्रमशः 6 सेमी व 8 सेमी हैं। छोटी जीवा AB की केन्द्र Oसे दूरी OM = 4 सेमी है।
ज्ञात करना है : दूसरी जीवा CD की केन्द्र O से दूरी ON
गणना : वृत्त की त्रिज्याएँ OA तथ OD खींचीं।
जीवा AB की केन्द्र O से (लाम्बिक) दूरी OM = 4 सेमी
NCERT Solutions for Class 9 Maths Chapter 10 (Hindi Medium) 10.6 3.1

Ex 10.6 Class 9 गणित Q4. मान लीजिए कि कोण ABC का शीर्ष एक वृत्त के बाहर स्थित है और कोण की भुजाएँ वृत्त से बराबर जीवाएँAD और CE काटती हैं। सिद्ध कीजिए कि ∠ABC जीवाओं AC तथा DE द्वारा केन्द्र पर अन्तरित कोणों के अन्तर को आधा है।
NCERT Solutions for Class 9 Maths Chapter 10 (Hindi Medium) 10.6 4
हल-
दिया है : ∠ABC बनाने वाली भुजाएँ AB व BC एक वृत्त से जीवाएँ AD और CE काटती हैं। जीवा AC द्वारा वृत्त के केन्द्र O पर अन्तरित कोण ∠AOC है और DE द्वारा केन्द्र पर अन्तरित कोण ∠DOE है।
NCERT Solutions for Class 9 Maths Chapter 10 (Hindi Medium) 10.6 4.1

Ex 10.6 Class 9 गणित Q5. सिद्ध कीजिए कि समचतुर्भुज की किसी भी भुजा को व्यास मानकर खींचा गया वृत्त, उसके विकर्णो के प्रतिच्छेद बिन्दु से होकर जाता है।
NCERT Solutions for Class 9 Maths Chapter 10 (Hindi Medium) 10.6 5
हल-
दिंया है: ABCD एक समचतुर्भुज है जिसमें AC और BD दो विकर्ण हैं जो एक-दूसरे को समकोण पर प्रतिच्छेदित करते हैं।
सिद्ध करना है: BC को व्यास मानकर खींचा गया वृत्त विकर्णो के प्रतिच्छेद बिन्दु P से होकर जाता है।
उपपत्ति : ABCD एक समचतुर्भुज है और उसके विकर्ण AC तथा BD परस्पर बिन्दु P पर प्रतिच्छेद करते हैं।
∠CPB = 90°
∆CPB एक समकोण त्रिभुज है जिसका कर्ण BC है। तब समकोण ∆CPB को ∠CPB अर्धवृत्त में स्थित होगा जिसका व्यास BC है।
अतः BC को व्यास मानकर खींचा गया वृत्त बिन्दु P (विकर्मों का प्रतिच्छेद बिन्दु) से होकर जाएगा।
इति सिद्धम्.

Ex 10.6 Class 9 गणित Q6. ABCD एक समान्तर चतुर्भुज है। A, B और C से जाने वाला वृत्त CD (यदि आवश्यक हो तो बढाकर) को E पर प्रतिच्छेद करता है। सिद्ध कीजिए कि AE = AD है।
NCERT Solutions for Class 9 Maths Chapter 10 (Hindi Medium) 10.6 6
हल-
दिया है: ABCD एक समान्तर चतुर्भुज है जिसके शीर्षों A, B और C से एक वृत्त खींचा गया है। जो भुजा CD को E पर काटता है।
सिद्ध करना है: AE = AD
उपपत्ति : चूँकि ABCD एक समान्तर चतुर्भुज है,
∠B = ∠D (समान्तर चतुर्भुज के सम्मुख कोण बराबर होते हैं।) ……(1)
चूंकि A, B, C से जाने वाला वृत्त CD को E पर काटता है,
ABCE एक चक्रीय चतुर्भुज है।
बहिष्कोण AED = ∠B ……(2)
समीकरण (1) व (2) से,
∠AED = ∠D (= ∠ADE)
∆ADE में,
∠AED = ∠ADE
∆ADE समद्विबाहु त्रिभुज है जिसमें
AD = AE
इति सिद्धम्.

Ex 10.6 Class 9 गणित Q7. AC और BD एक वृत्त की जीवाएँ हैं जो एक-दूसरे को समद्विभाजित करती हैं। सिद्ध कीजिए-
(i) AC और BD व्यास हैं।
(ii) ABCD एक आयत है।
NCERT Solutions for Class 9 Maths Chapter 10 (Hindi Medium) 10.6 7
हल-
दिया है: AC तथा BD एक वृत्त की जीवाएँ हैं जो एक-दूसरे को , बिन्दु O पर समद्विभाजित करती हैं।
सिद्ध करना है :
(i) AC तथा, BD वृत्त के व्यास हैं।
(ii) ABCD एक आयत है।
रचना : AB, BC, CD तथा DA को मिलाया।
उपपत्ति :
(i) जीवा AC और BD एक-दूसरे को बिन्दु O पर समद्विभाजित करती हैं।
OA = OB = OC = OD
तब OA, OB, OC और OD एक ऐसे वृत्त की त्रिज्याएँ हैं जिसका केन्द्र O है।
तब, AC = OA + OC = त्रिज्या + त्रिज्या = 2 x त्रिज्या
AC वृत्त का व्यास है।
BD भी O से होकर जाती है, तब BD भी वृत्त का व्यास है।
(ii) चूंकि AC व्यास है, तब ∠B = 90° तथा ∠D = 90°
और BD व्यास है, तब ∠A = 90° तथा ∠C = 90°
तब, ABCD एक ऐसा चतुर्भुज है जिसका प्रत्येक अन्त: कोण 90° है तथा विकर्ण एक-दूसरे को अर्धित करते हैं।
अत: ABCD एक आयत है।
इति सिद्धम्

Ex 10.6 Class 9 गणित Q8. त्रिभुज ABC के कोणों A, B और C के समद्विभाजक उसके परिवृत्त को क्रमशः बिन्दुओं D, E और F पर प्रतिच्छेदित करते हैं।
सिद्ध कीजिए कि ∆DEF के कोण क्रमशः 90° – \(\frac { A }{ 2 }\) , 90° – \(\frac { B }{ 2 }\) और 90° – \(\frac { C }{ 2 }\) है।
हल-
दिया है : ∆ABC के कोणों A, B और C के समद्विभाजक AD, BE व CF त्रिभुज के परिवृत्त को क्रमशः बिन्दुओं D, E व F पर काटते हैं। बिन्दुओं D, E व F से त्रिभुज DEF बनाया गया है।
NCERT Maths Class 9 Hindi Medium Circles Solutions 10.6 8

Ex 10.6 Class 9 गणित Q9. दो सर्वांगसम वृत्त परस्पर बिन्दुओं A और B पर प्रतिच्छेद करते हैं। A से होकर कोई रेखाखण्ड PAQ इस प्रकार खींचा गया है कि P और दोनों वृत्तों पर स्थित हैं। सिद्ध कीजिए कि BP = BQ है।
NCERT Solutions for Class 9 Maths Chapter 10 (Hindi Medium) 10.6 9
हल-
दिया है : दो वृत्तों के केन्द्र O1 व O2 हैं और वे बिन्दुओं A और B पर प्रतिच्छेद करते हैं। A से एकं रेखा PAQ खींची गई है जो वृत्तों से बिन्दुओं P और Q पर मिलती है।
सिद्ध करना है: रेखाखण्ड BP = रेखाखण्ड BQ
रचना : जीवा AB तथा त्रिज्याएँ O1A, O1B, O2A तथा O2B खींचीं।
उपपत्ति : चूँकि जीवा AB दोनों वृत्तों में उभयनिष्ठ है और दोनों वृत्त सर्वांगसम हैं।
O1 केन्द्र वाले वृत्त का चाप AB = O2 केन्द्र वाले वृत्त का चाप AB
∠AO1B = ∠AO2B (सर्वांगसम वृत्तों के समान चाप केन्द्र पर समान कोण अन्तरित करते हैं)
∠APB = ∠AQB (परिधि पर अन्तरित कोण)
अब ∆QBP में,
∠APB = ∠AQB (ऊपर सिद्ध हुआ है)
∠BPQ = ∠BQP
अतः BP = BQ (समान भुजाओं की सम्मुख भुजाएँ)
इति सिद्धम्.

Ex 10.6 Class 9 गणित Q10. किसी त्रिभुज ABC में, यदि ∠A को समद्विभाजक तथा BC का लम्ब समद्विभाजक प्रतिच्छेद करें, तो सिद्ध कीजिए कि वे ∆ABC के परिवृत्त पर प्रतिच्छेद करेंगे।
NCERT Solutions for Class 9 Maths Chapter 10 (Hindi Medium) 10.6 10
हल-
दिया है : ∆ABC के आधार BC का लम्ब समद्विभाजक XY है।
ABDC, ∆ABC का परिवृत्त है। लम्ब समद्विभाजक XY परिवृत्त को D पर काटता है। XY, BC को M पर काटता है।
सिद्ध करना है : ∠A का समद्विभाजक भी बिन्दु D से होकर जाएगा। रचना : DB तथा DC को मिलाया।
उपपत्ति : चूँकि XY, BC को लम्ब समद्विभाजक है और यह परिवृत्ते को बिन्दु D पर काटता है।
बिन्दु D, परिवृत्त पर भी है और XY पर भी।
∆BDM और ∆CDM में,
BM = CM (XY, BC का लम्बे समद्विभाजक है)
MD = MD (उभयनिष्ठ)
∠BMD = ∠CMD (XY ⊥ BC)
∆BDM = ∆CDM (भुजा-कोण-भुजा सर्वांगसमता से)
BD = CD (सर्वांगसम त्रिभुजों की संगत भुजाएँ)
बिन्दु D, परिवृत्त पर भी स्थित है।
परिवृत्त में,
जीवा BD = जीवा CD
चाप BD = चाप CD (समान चाप किसी वृत्त की समान जीवाएँ काटते हैं)
चाप BD द्वारा बिन्दु A पर अन्तरित कोण = चाप CD द्वारा बिन्दु A पर अन्तरित कोण
∠BAD = ∠CAD
AD, ∠A का समद्विभाजक है।
अत: ∠A का समद्विभाजक AD भी बिन्दु D से होकर जाता है।
इति सिद्धम्.

Hope given NCERT Solutions for Class 9 Maths Chapter 10 are helpful to complete your homework.

NCERT Solutions for Class 9 Maths Chapter 10 Circles (Hindi Medium) Read More »

error: Content is protected !!