CBSE Class 10

CBSE Sample Papers for Class 10 Maths Paper 3

CBSE Sample Papers for Class 10 Maths Paper 3

CBSE Sample Papers for Class 10 Maths Paper 3

These Sample papers are part of CBSE Sample Papers for Class 10 Maths. Here we have given CBSE Sample Papers for Class 10 Maths Paper 3

Time Allowed : 3 hours
Maximum Marks : 80

General Instructions

  • All questions are compulsory.
  • The question paper consists of 30 questions divided into four sections тАФ A, B, C and D.
  • Section A contains 6 questions of 1 mark each. Section B contains 6 questions of 2 marks each. Section C contains 10 questions of 3 marks each. Section D contains 8 questions of 4 marks each.
  • There is no overall choice. However, an internal choice has been provided in 4 questions of 3 marks each and 3 questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
  • Use of calculator is not permitted.

SECTION-A

Question 1.
Vertices of a triangle are (- 4, 0), (4, 0), (0, 3). What type of triangle is it ? [1]

Question 2.
If two positive integers p and q can be expressed as p = ab2 and q = a2b; a, b being prime
numbers, then find LCM (p, q).┬а┬а[1]

Question 3.
D and E are respectively the points on the sides AB and AC of a triangle ABC such that
AD = 2 cm, BD = 4 cm, BC = 9 cm and DE || BC. Then, find the length of DE.┬а┬а[1]

Question 4.
Find a quadratic polynomial, the sum and product of whose zeroes are 3 and – 2 respectively.┬а┬а[1]

Question 5.
For what value of p are 2p + 1, 12, 5p – 3 are three consecutive terms of an A.P. ?┬а┬а[1]

Question 6.
CBSE Sample Papers for Class 10 Maths Paper 3 Q 6.

SECTION-B

Question 7.
The decimal expansion of the rational number \(\frac { 33 }{ { 2 }^{ 2 }.{ 5 }^{ n } } \) terminates after 3 places of decimal. Then find the value of n.┬а┬а[2]

Question 8.
Find the value of a, if the distance between the points A(- 3, – 14) and B(a, – 5) is 9 units┬а┬а[2]

Question 9.
17 cards numbered 1, 2, 3, …, 17 are put in a box and mixed thoroughly. One person draws a card from the box. Find the probability that the number on the card is :┬а┬а[2]

  • Odd
  • A prime
  • Divisible by 3
  • Divisible by 3 and 2 bot

Question 10.
What is the probability that an ordinary year has 53 Sundays.┬а┬а[2]

Question 11.
Determine the sum of first 100 odd natural number.┬а┬а[2]

Question 12.┬а┬а
Find the zeroes of the polynomial 2x2 + x – 6.┬а┬а[2]

SECTION-C

Question 13.
Find the largest number that divides 1251, 9377 and 15628 leaving remainders 1, 2 and 3 respectively.┬а┬а[3]

Question 14.
The points A(2, 9), B(a, 5) and C(5, 5) are the vertices of a triangle ABC right angled at B. Find the values of a and hence the area of тИЖABC.┬а┬а[3]
OR
A(6,1), B(8, 2) and C(9, 4) are three vertices of a parallelogram тИЖBCD. If E is the mid-point of DC, find the area of тИЖADE.

Question 15.
Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.┬а[3]
OR
If BL and CM are median of a triangle ABC right angled at A then prove that:
4(BL2 + CM2) = 5BC2.

Question 16.
Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line segment joining the points of contact at the centre.┬а┬а[3]

Question 17.
From a circular piece of cardboard of radius 3 cm, two sectors of 90┬░ have been cut off. Find the perimeter of the remaining portion to nearest hundredth centimetres. (Take ╧А = \(\frac { 22 }{ 7 } \))┬а┬а[3]
OR
Find the area of the segment of a circle of radius 12 cm whose corresponding sector has a central angle of 60┬░.
(Use ╧А = 3.14)

Question 18.
Water is flowing at the rate of 15 km/h through a pipe of diameter 14 cm into a cuboidal pond which is 50 m long and 44m wide. In what time will the level of water in pond
rise by 21 cm ?┬а┬а[3]
OR
How many spherical lead shots each of diameter 4.2 cm can be obtained from a solid rectangular lead piece with dimensions 66 cm, 42 cm and 21 cm.

Question 19.
Find the zeroes of the polynomial 4x2 – x – 3 and verify the relationship between the zeroes and the coefficients.┬а┬а[3]

Question 20.
Solve graphically : 4x + 6y = 9; 7x + 5y = 2.┬а┬а[3]
OR
Sum of a two-digit number and the number formed by reversing the order of digits is 88. If difference of digits is 2 and the unit digit is greater, determine the number.

Question 21.
If sec ╬╕ = x + \(\frac { 1 }{ 4x } \), prove that : sec ╬╕ + tan ╬╕ = 2x or \(\frac { 1 }{ 2x } \)┬а[3]

Question 22.
Find the mean of the following data :┬а┬а[3]

AgeNo. of females
Less than 107
Less than 2020
Less than 3045
Less than 4058
Less than 5071

SECTION-D

Question 23.
If the angle of elevation of a cloud from a point h metre above a lake is ╬▒ and the angle of depression of its reflection in the lake is ╬▓, prove that the distance of the cloud from the point of observation is┬а ┬а[4]
CBSE Sample Papers for Class 10 Maths Paper 3 Q 23.
OR
A man is standing on the deck of a ship, which is 8 m above water level. He observes the angle of elevation of the top of a hill as 60┬░ and the angle of depression of the base of the hill as 30┬░. Calculate the distance of the hill from the ship and the height of the hill.

Question 24.
Draw a line segment AB of length 8 cm. Taking A as centre, draw a circle of radius 4 cm and taking B as centre, draw another circle of radius 3 cm. Construct tangents of each circle from the centre of the other circle.┬а┬а[4]

Question 25.
Show that the tangent at any point of a circle is perpendicular to the radius through the point of contact. In the given figure, AT is a tangent to the circle with centre O such that OT = 4 cm and тИаOTA = 30┬░. Find the length of AT.┬а[4]
CBSE Sample Papers for Class 10 Maths Paper 3 Q 25.

Question 26.
A solid right circular cone of height 120 cm and radius 60 cm is placed in a right circular cylinder full of water of height 180 cm such that it touches the bottom. Find the volume of water left in the cylinder, if the radius of the cylinder is equal to the radius of the cone.┬а┬а[4]
OR
A well of diameter 3 m is dug 14 m deep. The earth taken out of it has been spread evenly all around it in the shape of a circular ring of width 4 m to form an embankment. Find the height of the embankment.

Question 27.
A boat can go 24 km downstream and return in 5 hours. If the speed of the stream is 2 km/hr, find the speed of the boat in still water.┬а┬а[4]
OR
Product of digits of a two-digit number is 14. When 45 is added to the number then the digits interchanged their places. Find the number.

Question 28.
Shalini gets pocket money from her father every day. Out of the pocket money, she saves тВ╣30 on the first day and on each succeeding day, she increases her savings by 500 paise.┬а┬а[4]

  1. Find the amount saved by Shalini on 10th day.
  2. Find the total amount saved by Shalini in 30 days.

Question 29.
CBSE Sample Papers for Class 10 Maths Paper 3 Q 29.

Question 30.
Draw “more than ogive” for the following data :┬а┬а[4]

ClassesFrequency
1-102
11-2012
21-3038
31-4024
41-5010

SOLUTIONS
SECTION-A

Answer 1.
Given vertices of triangle are A(- 4, 0), B(4, 0) and C(0, 3).
We know that distance formula is,
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 1.1.
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 1.2.

Answer 2.
We have, p = ab2 and q = a2b
Now, p = a ├Ч b ├Ч b
and q = a ├Ч a ├Ч b
тИ┤ H.C.F. (p,q) = ab
We know,
Product of two numbers = H.C.F ├Ч L.C.M
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 2.

Answer 3.
Given : AD = 2 cm, BD = 4 cm, BC = 9 cm
and DE || BC
In ╬ФABC and ╬ФADE,
DE || BC
тИ┤ тИаB = тИаD [Corresponding angles]
and тИаC = тИаE [Corresponding angles]
тИ┤ By AA similarly axiom
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 3.

Answer 4.
Given : Sum of zeroes = 3 and Product of zeroes = – 2
We know that, equation of quadratic polyomial is given as
= k[x2 – (Sum of zeroes)x + Product of zeroes]
= k[x2 – 3x – 2] where k тЙа 0.

Answer 5.
Given : 2p + 1, 12, 5p – 3 are three consecutive terms of A.P.
12 – (2p + 1) = (5p – 3) – 12
12 – 2p – 1 = 5p – 3 – 12
11 – 2p = 5 p – 15
-2p – 5p = -15 – 11
– 7p = – 26
p = \(\frac { 26 }{ 7 } \).

Answer 6.
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 6.1.
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 6.2.

SECTION-B

Answer 7.
Given : Decimal expansion of rational number \frac { 33 }{ { 2 }^{ 2 }.{ 5 }^{ n } } terminate after 3 decimals.
тИ┤ Denominator of decimal number will be in the form = (2 x 5)n and n = 3 to terminate after 3 decimals.

Answer 8.
Given : A(- 3, – 14), B(a, – 5) and AB = 9 units
By distance formula,
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 8.
On squaring both sides, we get
81 = (a + 3)2 + (9)2
81 – 81 = (a + 3)2
тЗТ (a + 3)2 = 0
On taking square root both side, we get
a + 3 = 0
a = – 3.

Answer 9.
Total number of cards = 1, 2, 3, …, 17.
n(S) = 17
(i) Probability that the number is odd.
Number of odd number cards = 1, 3, 5, 7, 9, 11, 13, 15, 17.
тИ┤ n(E) = 9
Probability that number on the card is odd,
P(E) = \(\frac { n(E) }{ n(S) } \)
P(E) = \(\frac { 9 }{ 17 } \).

(ii) Probability that the number is a prime.
Number of prime number cards = 2, 3, 5, 7, 11, 13, 17
тИ┤ n(E) =7
Probability that a card is prime number,
n(E) = \(\frac { n(E) }{ n(S) } \) = \(\frac { 7 }{ 17 } \)

(iii) Probability that the number is divisible by 3.
Number of cards divisible by 3 = 3, 6, 9, 12, 15
тИ┤ n(E) = 5
Probability that the number is divisible by 3,
P(E) = \(\frac { n(E) }{ n(S) } \) = \(\frac { 5 }{ 17 } \)

(iv) Probability the number is divisible by 3 and 2 both.
Number of cards are divisible by 3 and 2 both = Number of cards are divisible by 6 = 6,12
тИ┤ n(E) = 2
Probability that the number is divisible by 3 and 2 both,
P(E) = \(\frac { n(E) }{ n(S) } \) = \(\frac { 2 }{ 17 } \)

Answer 10.
1 year has 365 days = (52 x 7 + 1) days
Ordinary year has 52 Sunday + 1 day
1 day may be {Sun, Mon, Tue, Wed, Thu, Fri, Sat}
n(S) = 7
That 1 day may be Sun = {Sun}
тИ┤ n(E) = 1
Probability of 53 Sundays in ordinary year
P(E) = \(\frac { n(E) }{ n(S) } =\frac { 1 }{ 7 } \)

Answer 11.
Sum of first 100 odd natural numbers i.e.,
1 + 3 + 5 + 7 + 9+ …
These are in arithmetic progression, with
a = 1, d = 3 – 1 = 2, n = 100
We know that
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 11.

Answer 12.
Given polynomial is,
2x2 + x – 6 = 0
2x2 + 3x – 3x – 6 = 0
2x(x + 2) – 3(x + 2) = 0
(x + 2) (2x – 3) = 0
Either x + 2 = 0 тЗТ x = -2 or 2x – 3 = 0 тЗТ x = \(\frac { 3 }{ 2 }\)
тИ┤ Zeroes of the polynomial are – 2 and \(\frac { 3 }{ 2 }\)

SECTION-C

Answer 13.
Given : 1251, 9377 and 15628 leave remainders 1, 2 and 3 respectively.
Required number = H.C.F. of (1251 – 1), (9377 – 2) and (15628 – 3)
= H.C.F. of 1250, 9375 and 15625
By Euclid’s lemma,
15625 = 1 x 9375 + 6250
9375 = 1 x 6250 + 3125
6250 = 2 x 3125 + 0
тИ┤ H.C.F. of 15625 and 9375 = 3125.
and H.C.F. of 3125 and 1250 = 625.
Again by Euclid’s lemma
3125 = 2 x 1250 + 625
1250 = 2 x 625 + 0
тИ┤ H.C.F. of 1250, 9375 and 15625 = 625
Hence, 625 is largest number that divides 1251, 9377 and 15628 leaving remainders 1, 2 and 3 respectively.

Answer 14.
Given : Vertices of triangle are A(2, 9), B(a, 5) and C(5, 5).
By distance formula,
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 14.1.
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 14.2.
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 14.3.
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 14.4.
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 14.5.
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 14.6.

Answer 15.
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 15.1.
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 15.2.
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 15.3.

Answer 16.
Given : PA and PB are tangents to a circle having centre O.
To prove : тИаAOB + тИаAPB = 180┬░.
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 16
Proof : OA is the radius of circle and PA is the tangent to the circle.
тИ┤ тИаOAP = 90┬░ …(i)
Similarly, OB is the radius of circle and PB is the tangent to the circle.
тИ┤ тИаOBP = 90┬░
In quadrilateral APBO,
тИаOAP + тИаAPB + тИаPBO + тИаBOA = 360┬░
90┬░ + тИаAPB + 90┬░ + тИаBOA = 360┬░
тИаAPB + тИаBOA = 360┬░ – 180┬░
тИаAPB + тИаBOA = 180┬░.

Answer 17.
We have, radius of cardboard, r = 3 cm.
Two sectors AOB and COD have been cut off in the circular cardboard.
тИ┤ Perimeter of remaining cardboard = OA + length of arc APD + OD + OB + Length of arc BQC + OC
= r + Length of arc APD + r + r + Length of arc BQC + r
= 4 x r + length of arc APD + length of arc BQC
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 17.1|
OR
Given : Radius of circle, r =12 cm
Central angle of segment = 60┬░
Area of segment = Area of sector OACD – Area of тИЖAOB
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 17.2
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 17.3

Answer 18.
Given : Diameter of cylindrical pipe = 14 cm
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 18.1
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 18.2
OR
Given : Diameter of lead ball = 4.2 cm
тИ┤ Radius, r = \(\frac { 4.2 }{ 2 }\) = 2.1 cm
Dimensions of lead piece = 66 cm ├Ч 42 cm ├Ч 21 cm
Volume of rectangular lead piece = l ├Ч b ├Ч h = 66 ├Ч 42 ├Ч 21 cm3
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 18.3

Answer 19.
Given polynomial is
4x2 – x – 3 = 0
тЗТ 4x2 – 4x + 3x – 3 =0
тЗТ 4x(x – 1) + 3(x – 1) =0
тЗТ (x – 1) (4x + 3) = 0
Either x – 1 = 0 тЗТ x = 1 or x + 3 = 0┬атЗТ x = – \(\frac { 1 }{ 4 }\)
тИ┤ Zeroes of the polynomial are 1 and – \(\frac { 3 }{ 4 }\)
Now,
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 19

Answer 20.
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 20.1
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 20.2
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 20.3
The point of intersection of these lines is (- 1.5, 2.5).
тИ┤ x = -1.5 and y = 2.5
OR
Let the ten’s place of digit be x.
Therefore, unit place of digit will be (x + 2)
Two-digit number = 10 ├Ч x + (x + 2) = 11x + 2
Reverse of the number = 10(x + 2) + x = 11x + 20
According to the question,
11x + 2 + 11x + 20 = 88
22x = 88 – 22
x = \(\frac { 66 }{ 22 }\) = 3
тИ┤ Two-digit number = 11x + 2 = 11 ├Ч 3 + 2 = 35.

Answer 21.
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 21.1
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 21.2

Answer 22.
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 22

SECTION-D

Answer 23.
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 23.1
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 23.2
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 23.3
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 23.4
Putting the value of x in equation (i), we get
h = 8 + тИЪ3 . 8тИЪ3
h = 8 + 24 = 32 m
and x = 8 ├Ч 1.732 = 13.856 m
Thus, height of the hill = 32 m
and distance between hill and ship = 13.856 m.

Answer 24.
Steps of construction :

  • Draw a line segment AB = 8 cm.
  • With A as centre and radius 4 cm, draw a circle.
  • With B as centre and radius 3 cm, draw another circle.
  • Draw perpendicular bisector of AB which meets AB at M.
  • With M as centre and MA as radius, draw a circle intersecting the circle with centre A at P and Q and the circle with centre B at R and S.
  • Join AR, AS, BP, BQ which are the required tangents.

CBSE Sample Papers for Class 10 Maths Paper 3 Ans 24

Answer 25.
Given : A circle C(0, r) and a tangent l at point A.
To prove : OA тКе l.
Construction : Take a point B, other than A, on the tangent l. Join OB. Suppose OB meets the circle at C.
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 25.1
Proof : We know that, among all line segment joining the point O to a point on l, the perpendicular is shortest to l.
Clearly, OA = OC
Now, OB = OC + BC
тИ┤ OB > OC
тЗТ OB > OA
тЗТ OA < OB
Thus, OA is shortest than any other line segment joining O to any point on l.
Thus, OA тКе l.
Given : OT = 4 cm
тИаOTA = 30┬░
Construction : Join OA.
Now, OA is the radius of circle and AT is the tangent to the circle.
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 25.2
тИ┤ OA тКе AT
In ╬ФOAT, тИаA = 90┬░
тИ┤ cos T = \(\frac { AT }{ OT } \)
cos 30┬░ = \(\frac { AT }{ 4 } \)
\(\frac { \sqrt { 3 } }{ 2 } \) = \(\frac { AT }{ 4 } \)
тИ┤ AT = 2тИЪ3 = 2 ├Ч 1.732 = 3.464 cm

Answer 26.
Given :
Radius of cylinder = Radius of cone = r = 60 cm
Height of cylinder (h) =180 cm
and Height of cone (H) =120 cm
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 26.1
Now,
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 26.2
OR
Given :
Diameter of well = 3 m
тИ┤ Radius, r = \(\frac { 3 }{ 2 } \)
Depth of well, h = 14 m
and Width of embankment = 4 m
Volume of sand dug out = ╧Аr┬▓h
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 26.3

Answer 27.
Given : Speed of stream = 2 Km/h
Let the speed of the boat in still water = x km/hr
тИ┤ Speed of boat in downstream = (x + 2) km/hr
and speed of boat in upstream = (x – 2) Km/hr
We know
Time = \(\frac { Distance }{ Speed } \)
тИ┤ Time taken to go 24 Km Up stream = \(\frac { 24 }{ x-2 } \)
and time taken to go 24 Km downstream = \(\frac { 24 }{ x+2 } \)
According to the question,
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 27.1
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 27.2
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 27..3
OR
Let the unit digit be x and tens digit be y
Number = 10y + x
and, reverse of the number = 10x + y
According to the question,
xy = 14
and, 10y + x + 45 = 10x + y
тЗТ 9x – 9y = 45
тЗТ x-y =5
тЗТ x = 5 + y
Substituting the value of x in equation (i), we get
(5 + y)y = 14
y2 + 5y – 14 = 0
y2 + 7y – 2y – 14 = 0
y(y + 7)-2(y + 7) =0
(y + 7) (y-2) =0
y + 7 = 0 тЗТ y = – 7 (digit is not negative)
y – 2 = 0 тЗТ y = 2
x =5 + y = 7
When y = 2, then
тИ┤ Required two-digit number = 10y + x = 10 ├Ч 2 + 7 = 27

Answer 28.
Money saved on 1st day = тВ╣ 30
Money saved on IInd day = тВ╣ 30 + 500 p = тВ╣ 35
Money saved on IIIrd day = тВ╣ 30 + 500 p + 500 p = тВ╣ 35
and so on.
Amount of money saved on successive days is an AP with
First term, a = 30 and common difference, d = 5.
(i) Money saved on 10th day,
We know that
тИ┤ an = a + (n – 1 )d
a10 = a + 9d = 30 + 9 x 5 = тВ╣ 75
(ii) Money saved in 30 days
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 28

Answer 29.
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 29.1
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 29.2

Answer 30.
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 30.1
CBSE Sample Papers for Class 10 Maths Paper 3 Ans 30.2

We hope the CBSE Sample Papers for Class 10 Maths Paper 3 help you. If you have any query regarding CBSE Sample Papers for Class 10 Maths Paper 3, drop a comment below and we will get back to you at the earliest.

CBSE Sample Papers for Class 10 Maths Paper 3 Read More ┬╗

CBSE Sample Papers for Class 10 Maths Paper 5

CBSE Sample Papers for Class 10 Maths Paper 5

CBSE Sample Papers for Class 10 Maths Paper 5

These Sample Papers are part of CBSE Sample Papers for Class 10 Maths. Here we have given CBSE Sample Papers for Class 10 Maths Paper 5

Time Allowed : 3 hours
Maximum Marks : 80

General Instructions

  • All questions are compulsory.
  • The question paper consists of 30 questions divided into four sections – A, B, C and D.
  • Section A contains 6 questions of 1 mark each. Section B contains 6 questions of 2 marks each. Section C contains 10 questions of 3 marks each. Section D contains 8 questions of 4 marks each.
  • There is no overall choice. However, an internal choice has been provided in 4 questions of 3 marks each and 3 questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
  • Use of calculator is not permitted.

SECTION-A

Question 1.
AOBC is a rectangle whose three vertices are A(0, 3), 0(0, 0) and B(5, 0). Find the length of its diagonal CO.

Question 2.
In the given figure, if тИаAOB = 125┬░, then find the measure of тИаDOC.
CBSE Sample Papers for Class 10 Maths Paper 5 2

Question 3.
A vessel has 136 lit. of oil. Another vessel has 92 lit. of oil. What is the capacity of the largest possible ladle which can measure out all the oil in each vessel in exact number of times ?

Question 4.
For what value of k, the system : kx + 3y = 11; 2x + 5y = 3, has unique solution.

Question 5.
If one root of 2x┬▓ + kx – 6 = 0 is 2, find the value of k.

Question 6.
Evaluate : sin 30┬░ cos 60┬░ + sin 60┬░ cos 30┬░.

SECTION-B

Question 7.
If the HCF of 85 and 153 is expressible in the form 85m – 153, find the value of m.

Question 8.
Check whether (5, – 2), (6, 4) and (7, – 2) are the vertices of an isosceles triangle or not.

Question 9.
A bag contains 5 red balls, 8 white balls, 4 green balls and 7 black balls. If one ball is drawn at random, find the probability that it is :
(i) Black ball
(ii) Red ball
(iii) Not a green ball
(iv) Green or white ball

Question 10.
A two digit number is selected at random. What is the chance that will be :
(i) A composite number which is odd
(ii) Successor of a prime number

Question 11.
Can x – 1 be the remainder on division of a polynomial p(x) by 2x + 3 ? Justify your answer.

Question 12.
Find k if the sum of roots of equation x┬▓ – x + k(2x – 1) is Zero.

SECTION-C

Question 13.
Show that exactly one of the numbers n, n + 2 or n + 4 is divisible by 3.

Question 14.
If P(9a – 2, – b) divides line segment joining A(3a + 1,- 3) and B(8a, 5) in the ratio 3 : 1, find the value of a and b.

Question 15.
In the given figure, D and E trisect BC. Prove that 8AE┬▓ = 3AC┬▓ + 5AD┬▓
CBSE Sample Papers for Class 10 Maths Paper 5 15

Question 16.
In the given figure, AB is a chord of the circle and AOC is its diameter such that тИаACB = 50┬░. If AT is the tangent to the circle at the point A, then find the measure of тИаBAT.
CBSE Sample Papers for Class 10 Maths Paper 5 16
A triangle ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC into which BC is divided by the point of contact D are of lengths 8 cm and 6 cm respectively. Find the sides AB and AC.
CBSE Sample Papers for Class 10 Maths Paper 5 16.1

Question 17.
A path of 4 m width runs round a semi-circular grassy plot whose circumference is \(163 \frac { 3 }{ 7 } \) m.
Find :
(i) The area of the path.
(ii) The cost of gravelling the path at the rate of Rs 1.50 per m┬▓.
(iii) The cost of turfing the plot at the rate of 45 paise per m┬▓.

OR

All the vertices of a square lie on a circle. Find the area of the square, if area of the circle is 1256 cm┬▓. (Use ╧А = 3.14)

Question 18.
500 persons are taking a dip into a cuboidal pond which is 80 m long and 50 m broad. What is the rise of water level in the pond, if the average displacement of the water by a person is 0.04 m3 ?

OR

How many spherical lead shots of diameter 4 cm can be made out of a solid cube of lead whose edge measures 44 cm ?

Question 19.
Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.

OR

If sum of first 6 terms of an A.P. is 36 and that of the first 16 terms is 256, find the sum of first 10 terms.

Question 20.
Solve for x :\(2\left( { x }^{ 2 }+\frac { 1 }{ { x }^{ 2 } } \right) -9\left( x+\frac { 1 }{ x } \right) +14=0\)

Question 21.
If tan (A + B) = тИЪ3 and tan (A – B) = \(\frac { 1 }{ \sqrt { 3 } } \);0┬░ < A + B тЙд 90┬░; A > B, find sin 2A and cos 6B.

Question 22.
Find the mean of the following data :
CBSE Sample Papers for Class 10 Maths Paper 5 22

SECTION-D

Question 23.
The angle of elevation of a stationary cloud from a point 2500 m above a lake is 15┬░ and the angle of depression of its reflection in the lake is 45┬░. What is the height of the cloud above the lake level ?

OR

The angle of elevation of the top of a vertical tower PQ from a point X on the ground is 60┬░. At a point Y, 40 m vertically above X, the angle of elevation of the top is 45┬░. Calculate the height of the tower.

Question 24.
Construct a right triangle in which the sides (other than hypotenuse) are of lengths 5 cm and 4 cm. Then construct another triangle whose sides are 5/3 times the corresponding sides of the given triangle.

Question 25.
In a class test, the sum of Kamal’s marks in Maths and English is 40. Had he got 3 marks more in Maths and 4 marks less in English, the product of their marks would have been 360. Find his marks in two subjects separately.

Question 26.
A metallic right circular cone 20 cm high and whose vertical angle is 60┬░ is cut into two parts at the middle of its height by a plane parallel of its base. If the frustum so obtained be drawn into a wire of diameter 1/16 cm, find the length of the wire.

OR

A pen stand made of wood is in the shape of a cuboid with four conical depressions and a cuboidal depression to hold the pens and pins, respectively. The dimensions of the cuboid are 10 cm, 5 cm and 4 cm. The radius of each of the conical depressions is 0.5 cm and the depth is 2.1 cm. The edge of the cubical depression is 3 cm. Find the volume of the wood in the entire stand.

Question 27.
Solve graphically x – y = 0, 2x + 3y – 30 = 0. Also find coordinates of points where 2x + 3y – 30 = 0 meets axis of X and Y.

OR

Students of a class are made to stand in rows. If 4 students are extra in each row, there would be two rows less. If 4 students are less in each row, there would be 4 more rows. Find the number of students in the class.

Question 28.
Two pipes running together can fill a tank in \(5 \frac { 5 }{ 21 } \) minutes. If one pipe takes 1 minute more than the other, then find the time in which each pipe would individually fill the tank.

Question 29.
If sin ╬▒ = a sin ╬▓ and tan ╬▒ = b tan ╬▓, then prove that cos┬▓ ╬▒ = \(\frac { { a }^{ 2 }-1 }{ { b }^{ 2 }-1 } \)

Question 30.
Draw more than ogive’ and ‘less than ogive’ for the following distribution on the same graph. Also find the median from the graph.
CBSE Sample Papers for Class 10 Maths Paper 5 30

SOLUTIONS

SECTION-A

Solution 1:
We know, diagonals of rectangle are equal.
OC = AB
=> \(OC=\left| \sqrt { { (5-0) }^{ 2 }+{ (0-3) }^{ 2 } } \right| \)
=> \(OC=\left| \sqrt { 25+9 } \right| =\left| \sqrt { 34 } \right| \)
=> \(OC=\sqrt { 34 } \) units
CBSE Sample Papers for Class 10 Maths Paper 5 1

Solution 2:
Given
тИаAOB = 125┬░
We know, opposite sides of a quadrilateral circumscribing a circle subtend supplements angles at the centre of a circle.
тИ┤тИаAOB +тИаDOC = 180┬░
=> 125┬░ + тИаDOC = 180┬░
=> тИаDOC = 180┬░ – 125┬░
= 55┬░ Ans.

Solution 3:
Largest capacity of the ladle which can measure out all the oil
= H.C.F. of 136 and 92
Now, 136 = 2 x 2 x 2 x 17
and 92 = 2 x 2 x 23
H.C.F. (136, 92) = 4
тИ┤ 4 litre capacity ladle can measure out all the oil in each vessel in exact number of times. Ans.

Solution 4:
Given equations are,
kx + 3y – 11 = 0
and 2x + 5y – 3 =0
CBSE Sample Papers for Class 10 Maths Paper 5 4
CBSE Sample Papers for Class 10 Maths Paper 5 4.1

Solution 5:
Given equation is,
2x┬▓ + kx – 6 = 0
One root of the equation is 2.
x = 2
2(2)┬▓ + k(2) – 6 = 0
8 + 2k – 6 = 0
2k = – 2
k = – 1.

Solution 6:
We have,
sin 30┬░ cos 60┬░ + sin 60┬░ cos 30┬░
=> \(\frac { 1 }{ 2 } .\frac { 1 }{ 2 } +\frac { \sqrt { 3 } }{ 2 } .\frac { \sqrt { 3 } }{ 2 } \)
=> \(\frac { 1 }{ 4 } +\frac { 3 }{ 4 } \)
=> 1

SECTION-B

Solution 7:
85 = 5 x 17
153 = 3 x 3 x 17
тИ┤H.C.F. (85, 153) = 17
But
тИ┤H.C.F. = 85m – 153
17 = 85m – 153
17 + 153 = 85m
\(m= \frac { 170 }{ 85 } \)
= 2

Solution 8:
Let the given points be A(5, – 2), B(6, 4), C(7, – 2).
Now,
CBSE Sample Papers for Class 10 Maths Paper 5 8
Here, we observe that
AB = BC
and AB+BCтЙаAC
тИ┤Points A,B,C forms an isosceles triangle with AB = BC

Solution 9:
We have,
Number of red balls = 5
Number of white balls = 8
Number of green balls = 4
Number of black balls = 7
Total balls = 24
CBSE Sample Papers for Class 10 Maths Paper 5 9

Solution 10:
Total two-digit numbers 10 to 99 = 90
тИ┤n(S) = 90
(i) Composite numbers which is odd = {15, 21, 25, 27, 33, 35, 39, 45, 49, 51, 55, 57, 63, 65, 69, 75, 77, 81, 85, 87, 91, 93, 95, 99}
тИ┤ n(E) = 24
Probability of odd composite number
= \(\frac { n(E) }{ n(S) } =\frac { 24 }{ 90 } =\frac { 4 }{ 15 } \)
(ii) Successor of a prime number = {12, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 54, 60, 62, 68, 72, 74, 80, 84, 90, 98}
тИ┤ n(E) = 21
Probability of a successor of a prime number
= \(\frac { n(E) }{ n(S) } =\frac { 21 }{ 90 } =\frac { 7 }{ 30 } \)

Solution 11:
No, degree of the remainder is always less than degree of the divisor.

Solution 12:
Given equation is,
x┬▓ – x + k(2x – 1) = 0
=> x┬▓ – x + 2kx – k = 0
=> x┬▓ + (2k – 1)x – k = 0
CBSE Sample Papers for Class 10 Maths Paper 5 12
CBSE Sample Papers for Class 10 Maths Paper 5 12.1

SECTION-C

Solution 13:
Let q be the quotient and r be the remainder when n is divisible by 3.
Therefore, n = 3q + r, where r = 0, 1, 2
=> n = 3q or n = 3q + 1 or n = 3q + 2
Case I: If n = 3q, then n is divisible by 3 but n + 2 = 3q + 2 and n + 4 = 3a + 4 are not divisible by 3.
Case II: If n = 3q + 1, then n + 2 = 3q + 3 = 3(q + 1), which is divisible by 3 and n + 4 = 3q + 5, which is not divisible by 3.
So, only (n + 2) is divisible by 3.
Case III: If n = 3q + 2, then n + 2 = 3q + 4, which is not divisible by 3 and n + 4 = 3q + 6 = 3(q + 2) is divisible by 3.
So, only (n + 4) is divisible by 3.
Hence, one and only one out of n, (n + 2), (n + 4) is divisible by 3.

Solution 14:
By section formula,
CBSE Sample Papers for Class 10 Maths Paper 5 14

Solution 15:
Here, D and E trisect BC.
=>BD = DE = EC = \(\\ \frac { 1 }{ 3 } \) BC
or BE = 2 BD,
BC = 3BD
In right тИЖABD,
we have
AD┬▓ = AB┬▓ + BD┬▓….(i)
CBSE Sample Papers for Class 10 Maths Paper 5 15

Solution 16:
In the given circle,
тИаABC = 90┬░
тИаACB + тИаCAB = 90┬░
50┬░ + тИаCAB = 90┬░
тИаCAB = 90┬░ – 50┬░
тИаCAB = 40┬░
Now, OA is radius of the circle and AT is the tangent of circle
тИаOAT = 90┬░
тИаOAB + тИаBAT = 90┬░
40┬░ + тИаBAT = 90┬░
тИаBAT = 90┬░ – 40┬░
тИаBAT = 50┬░
CBSE Sample Papers for Class 10 Maths Paper 5 16
CBSE Sample Papers for Class 10 Maths Paper 5 16.1
CBSE Sample Papers for Class 10 Maths Paper 5 16.2

Solution 17:
We have
CBSE Sample Papers for Class 10 Maths Paper 5 17
CBSE Sample Papers for Class 10 Maths Paper 5 17.1

Solution 18:
Given
length of pond, l = 80m
breadth of pond, b = 50m
CBSE Sample Papers for Class 10 Maths Paper 5 18
CBSE Sample Papers for Class 10 Maths Paper 5 18.1

Solution 19:
Odd integers between 1 and 1000 divisible by 3 are 3, 9,15, 21, … 999
The above series form an A.P.
where a = 3, d = 9 – 3 = 6 and an = 999
We know
CBSE Sample Papers for Class 10 Maths Paper 5 19
CBSE Sample Papers for Class 10 Maths Paper 5 19.1
CBSE Sample Papers for Class 10 Maths Paper 5 19.2

Solution 20:
We have
\(2\left( { x }^{ 2 }+\frac { 1 }{ { x }^{ 2 } } \right) -9\left( x+\frac { 1 }{ x } \right) +14=0\)
\(2\left( { x }^{ 2 }+\frac { 1 }{ { x }^{ 2 } } +2 \right) -9\left( x+\frac { 1 }{ x } \right) +14-4=0\)
CBSE Sample Papers for Class 10 Maths Paper 5 20
CBSE Sample Papers for Class 10 Maths Paper 5 20.1

Solution 21:
We have
tan(A+B) = тИЪ3
=> tan(A+B) = tan 60┬░
CBSE Sample Papers for Class 10 Maths Paper 5 21

Solution 22:
CBSE Sample Papers for Class 10 Maths Paper 5 22

SECTION-D

Solution 23:
Let B be the point of oservation, P be the cloud and P’ be its reflection in the take.
AB = 2500 m
тИаPBC = 15┬░
and тИаCBP = 45┬░
Let the height of cloud from lake be h m.
OP = OPтАЩ= h m
CBSE Sample Papers for Class 10 Maths Paper 5 23
CBSE Sample Papers for Class 10 Maths Paper 5 23.1
CBSE Sample Papers for Class 10 Maths Paper 5 23.2
CBSE Sample Papers for Class 10 Maths Paper 5 23.3

Solution 24:
Steps, of construction :
(1) Draw a line segment AB = 4 cm.
(2) Construct тИаXAB = 90┬░.
(3) With A as centre, draw an arc of radius 3 cm intersecting AX at C.
(4) Join BC. Thus, тИЖABC is obtained.
(5) Draw an acute angle тИаBAY below of AB.
(6) Mark points A1, A2, A3, A4, A5 on AY such that
AA1 = A1A2 = A2A3 = A3A4 = A4A5.
(7) Join A3B.
(8) Draw a line through A5, parallel to A3B intersecting extended line segment AB at B’.
(9) Through B’, draw a line parallel to BC intersecting AX at C’.
(10) Thus, тИЖAB’C’ is obtained whose sides are \(\\ \frac { 5 }{ 3 } \) times the corresponding sides of тИЖABC.
CBSE Sample Papers for Class 10 Maths Paper 5 24

Solution 25:
Let the marks obtained in Maths be x, then marks obtained in English = 40 – x
According to the question,
(x + 3) (40 – x – 4) = 360
=> (x + 3) (36 – x) = 360
=> – x┬▓ + 36x + 108 – 3x = 360
=> – x┬▓ + 33x – 252 = 0
=> x┬▓ – 21x – 12x + 252 = 0
=> x(x – 21) – 12(x – 21) = 0
(x – 21) (x – 12) = 0
Either x – 21 = 0 or x – 12 = 0
=> x = 21 or x = 12
If x = 21, then marks obtained in Maths = 21
and marks obtained in English = 40 – 21 = 19
If x = 12, then marks obtained in Maths = 12
and marks obtained in English = 40 – 12 = 28

Solution 26:
Given
Height of the cone = 20 cm
PQ (h) = 10 cm
CBSE Sample Papers for Class 10 Maths Paper 5 26
CBSE Sample Papers for Class 10 Maths Paper 5 26.1
CBSE Sample Papers for Class 10 Maths Paper 5 26.2

Solution 27:
Given equations are
x – y = 0
y = x
=> x – y = 0
CBSE Sample Papers for Class 10 Maths Paper 5 27
CBSE Sample Papers for Class 10 Maths Paper 5 27.1
CBSE Sample Papers for Class 10 Maths Paper 5 27.2

Solution 28:
Let one pipe fill the tank in x minute
then other will fill the tank in (x + 1) minutes.
According to the question,
CBSE Sample Papers for Class 10 Maths Paper 5 28

Solution 29:
Given : sin ╬▒ = a sin ╬▓
sin┬▓ ╬▒ = > a┬▓ sin┬▓ ╬▓
CBSE Sample Papers for Class 10 Maths Paper 5 29
CBSE Sample Papers for Class 10 Maths Paper 5 29.1

Solution 30:
CBSE Sample Papers for Class 10 Maths Paper 5 30

We hope the CBSE Sample Papers for Class 10 Maths Paper 5 help you. If you have any query regarding CBSE Sample Papers for Class 10 Maths Paper 5, drop a comment below and we will get back to you at the earliest.

CBSE Sample Papers for Class 10 Maths Paper 5 Read More ┬╗

CBSE Sample Papers for Class 10 Maths Paper 8

CBSE Sample Papers for Class 10 Maths Paper 8

CBSE Sample Papers for Class 10 Maths Paper 8

These Sample Papers are part of CBSE Sample Papers for Class 10 Maths. Here we have given CBSE Sample Papers for Class 10 Maths Paper 8

Time Allowed : 3 hours
Maximum Marks : 80

General Instructions

  • All questions are compulsory.
  • The question paper consists of 30 questions divided into four sections – A, B, C and D.
  • Section A contains 6 questions of 1 mark each. Section B contains 6 questions of 2 marks each. Section C contains 10 questions of 3 marks each. Section D contains 8 questions of 4 marks each.
  • There is no overall choice. However, an internal choice has been provided in 4 questions of 3 marks each and 3 questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
  • Use of calculator is not permitted.

SECTION-A

Question 1.
If two integers a and b are written as a = x3y2 and b = xy4; x, y are prime numbers, then find H.C.F. (a, b).

Question 2.
Find the perimeter of a triangle with vertices (0, 4), (0, 0) and (3, 0).

Question 3.
If tangents PA and PB from a point P to a circle with centre O are inclined to each other at angle of 80┬░, then find the measure of тИаPOA.

Question 4.
Determine the pair of linear equations from 2x + 3y = 5, y + \(\\ \frac { 2 }{ 3 } \) x = 5, 4x = 6y + 10, which has infinite solution.

Question 5.
The first term of an A.P. is p and its common difference is q. Find its 10th term.

Question 6.
If 9 sec A = 41, find cos A and cot A.

SECTION-B

Question 7.
Find a point which is equidistant from the points A(- 5, 4) and B(- 1, 6). How many such points are there ?

Question 8.
Which term of A.P. 129, 125, 121, … is its first negative term ?

Question 9.
Write the denominator of the rational number \(\\ \frac { 257 }{ 5000 } \) in the form 2m x 5n, where m, n are non – negatives. Hence, write its decimal expansion without actual division.

Question 10.
It is known that a box of 600 electric bulbs contains 12 defective bulbs. One bulb is taken out at random from this box. What is the probability that it is a non-defective bulb ?

Question 11.
In a lottery of 50 tickets numbered 1 to 50, one ticket is drawn. Find the probability that the drawn ticket bears a prime number.

Question 12.
For what value of k the quadratic equation (2k + 3) x2 + 2x – 5 = 0 has equal roots ?

SECTION-C

Question 13.
Find the smallest number which when divided by 161, 207 and 184 leaves remainder 21 in each case.

Question 14.
Find the values of k if the points A(k + 1, 2k), B(3k, 2k + 3) and C(5k – 1, 5k) are collinear.

OR

If the points A( 1, – 2), B(2, 3), C(a, 2) and D(- 4, – 3) form a parallelogram, find the value of a and height of the parallelogram taking AB as base.

Question 15.
O is the point of intersection of the diagonals AC and BD of a trapezium ABCD with AB || DC. Through O, a line segment PQ is drawn parallel to AB meeting AD in P and BC in Q. Prove that PO = QO.

Question 16.
Two concentric circles are of radii 5 cm and 3 cm. Find the length of the chord of the larger circle which touches the smaller circle.

Question 17.
The diameter of coin is 1 cm (fig.). If four such coins be placed on a table so that the rim of each touches that of the other two, find the area of the shaded region (Take ╧А = 3.1416).
CBSE Sample Papers for Class 10 Maths Paper 8 17

OR
Area of a sector of a circle of radius 36 cm is 54╧А cm2. Find the length of the corresponding arc of the sector.

Question 18.
A hemispherical tank of diameter 3 m, is full of water. It is being emptied by a pipe at the rate of \(3 \frac { 4 }{ 7 } \) litres per second. How much time will it take to make the tank half empty ?

OR

A wall 24 m long, 0.4 m thick and 6 m high is constructed with the bricks each of dimensions 25 cm x 16 cm x 10 cm. If the mortar occupies 1/10 of the volume of the wall, then find the number of bricks used in constructing the wall.

Question 19.
The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.

OR

Find the sum of first 17 terms of an A.P. whose 4th and 9th terms are – 15 and – 30 respectively.

Question 20.
Solve for x :
\({ \left( \frac { 2x+1 }{ x+1 } \right) }^{ 4 }-13{ \left( \frac { 2x+1 }{ x+1 } \right) }^{ 2 }+36=0\)

Question 21.
If cosec A + cot A = p, then prove that sec A = \(\frac { { p }^{ 2 }+1 }{ { p }^{ 2 }-1 } \)

Question 22.
Find mode of the following data :
CBSE Sample Papers for Class 10 Maths Paper 8 22

SECTION-D

Question 23.
From the top of a lighthouse, the angles of depression of two ships on the opposite sides of it are observed to be a and p. If the height of the lighthouse is h metres and the line joining the ships passes through the foot of the lighthouse, show that the distance between the ships is \(\frac { h\left( tan\alpha +tan\beta \right) }{ tan\alpha \quad tan\beta } \) meters

OR

A boy is standing on the ground and flying a kite with 100 m of string at an elevation of 30┬░. Another boy is standing on the roof of a 10 m high building and is flying his kite at an elevation of 45┬░. Both the boys are on opposite sides of both the kites. Find the length of the string that the second boy must have so that the two kites meet.

Question 24.
Construct a right triangle in which sides (other than the hypotenuse) are of lengths 8 cm and 6 cm. Then construct another triangle whose sides are 3/4 times the corresponding sides of the first triangle.

Question 25.
State and prove the converse of Pythagoras theorem.

Question 26.
A hemispherical bowl of internal radius 9 cm is full of liquid. The liquid is to be filled into cylindrical shaped bottles each of radius 1.5 cm and height 4 cm. How many bottles are needed to empty the bowl ?
CBSE Sample Papers for Class 10 Maths Paper 8 26

OR

A gulab jamun, contains sugar syrup about 30% of its volume. Find approximately how much syrup would be found in 45 gulab jamuns, each shaped like a cylinder with two hemispherical ends with length 5 cm and diameter 2.8 cm.

Question 27.
A boat goes 12 km downstream and 26 km upstream in 8 hours. It can go 16 km upstream and 32 km downstream in same time. Find the speed of boat in still water and the speed of stream.

OR

Solve graphically x – 2y = 1; 2x + y = 7. Also find the coordinates of points where the lines meet X-axis.

Question 28.
A sum of Rs 700 is to be used to give seven cash prizes to students of a school for their overall academic performance. If each prize is Rs 20 less than its preceding prize, find the value of each prize.

Question 29.
Show that :
\(\frac { sinA-cosA+1 }{ sinA+cosA-1 } =\frac { 1 }{ secA-tanA } \)

Question 30.
The median of the following data is 20.75. Find the missing frequencies ‘x’ and тАШy’, if the total frequency is 100.
CBSE Sample Papers for Class 10 Maths Paper 8 30

SOLUTIONS

SECTION-A

Solution 1.
Given : a = x3y2
b = xy4
H.C.F.(a, b) = xy2.

Solution 2.
Given vertices are A(3, 0), B(0, 4) and 0(0, 0).
OA = 3 units
OB = 4 units
In тИЖAOB, тИаO = 90┬░
тИ┤From Pythagoras theorem,
AB2 = OA2 + OB2 = 32 + 42
AB = тИЪ9+16 = 5 unit
Perimeter of тИЖOAB = OA + OB + AB
= 3 + 4 + 5 = 12 unit.
CBSE Sample Papers for Class 10 Maths Paper 8 2

Solution 3.
Given :
тИаAPB = 80┬░
In тИЖOAP and тИЖOBP,
тИаB = тИаA [each 90┬░]
OA = OB [radii]
OP = OP [common]
By RHS congruency rule
CBSE Sample Papers for Class 10 Maths Paper 8 3
CBSE Sample Papers for Class 10 Maths Paper 8 3.1

Solution 4.
Given equations are,
2x + 3y – 5 = 0
y + \(\\ \frac { 2 }{ 3 } \)x – 5=0
and 4x + 6y = 10
=> 2x + 3y – 5 = 0
2x + 3y – 15 = 0
and 4x + 6y – 10 =0
CBSE Sample Papers for Class 10 Maths Paper 8 4
CBSE Sample Papers for Class 10 Maths Paper 8 4.1

Solution 5.
Given : The first term of A.P. = a
and common difference = q
we know, an = a + (n – 1)d
тИ┤ a10 = p + (10 – 1)d
=> a10 = P + 9d.

Solution 6.
Given : 9 sec A = 41
=> sec A = \(\\ \frac { 41 }{ 9 } \)
cos A = \(\\ \frac { 1 }{ sec A } \)
cos A = \(\\ \frac { 9 }{ 41 } \)
CBSE Sample Papers for Class 10 Maths Paper 8 6

SECTION-B

Solution 7:
Let the point P(x, y) be equidistant from the points A (- 5, 4) and B(- 1, 6).
CBSE Sample Papers for Class 10 Maths Paper 8 7
\(\left| \sqrt { { (x+5) }^{ 2 }+{ (y-4) }^{ 2 } } \right| =\left| \sqrt { { (x+1) }^{ 2 }+{ (y-6) }^{ 2 } } \right| \)
Squaring both sides
(x + 5)2 + (y – 4)2 = (x + 1)2 + (y – 6)2
x2 + 10x + 25 + y2 – 8y + 16 = x2 + 2x + 1 + y2 – 12y + 36
10x – 2x – 8y + 12y + 41 – 37 = 0
8x + 4y + 4 = 0
2x + y + 1 =0
The points lying on 2x + y + 1 = 0 are equidistant from A and B.

Solution 8:
Given A.P. is 129, 125, 121,…
Here, a = 129, d = 125 – 129 = 121 – 125 = – 4
Let nth term be the first negative term.
Then Tn < 0.
We know, nth term, Tn = a + (n – 1)d
= 129 + (n -1) (- 4)
= 129 – 4n + 4
= 133 – 4n
тИ┤Tn< 0
тИ╡133 – 4n < 0
=> 133 < 4n
=> 4n > 133
=> n =\(\\ \frac { 133 }{ 4 } \)
= \(33 \frac { 1 }{ 4 } \)
Hence, 34th term will be the first negative term.

Solution 9:
We have,
CBSE Sample Papers for Class 10 Maths Paper 8 9

Solution 10:
Total bulbs = 600
Number of defective bulbs = 12
Number of non-defective bulbs = 600 – 12 = 588
probability of a non defective bulb = \(\frac { Number\quad of\quad non\quad defective\quad bulbs }{ total\quad bulbs } \)
= \(\\ \frac { 588 }{ 600 } \)
= \(\\ \frac { 147 }{ 150 } \)

Solution 11:
Total tickets 1, 2, 3, 4, …, 50
=> n(S) = 50
Prime number tickets = 2, 3, 5, 7,11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47.
n(E) = 15
Probability that the ticket bears a prime number
P(E) = \(\\ \frac { n(E) }{ n(S) } \)
= \(\\ \frac { 15 }{ 50 } \)
= \(\\ \frac { 3 }{ 10 } \)
= 0.3

Solution 12:
Given quadratic equation is,
(2k + 3)x2 + 2x – 5 = 0
On comparing the equation with ax2 + bx + c = 0, we get
a = 2k + 3, b = 2, c = – 5
For equal roots,
b2 – 4ac = 0
(2)2 – 4(2k + 3) ( – 5) = 0
4 + 20(2k + 3) = 0
4 + 40k + 60 = 0
40k = – 64
k = \(\\ \frac { -64 }{ 40 } \)
k = \(\\ \frac { -8 }{ 5 } \)

SECTION-D

Solution 13:
Given numbers are 161, 207 and 184.
161 = 7 x 23
207 = 3 x 3 x 23
тИ┤ 184 = 2 x 2 x 2 x 23
L.C.M. (161, 207, 1841) = 2 x 2 x 2 x 3 x 3 x 23 x 7
= 11592
Smallest number which when divided by 161, 207 and 184, leaves remainder 21 in each case
= 11592 + 21
= 11613. Ans.

Solution 14:
Given points are A(k + 1, 2k), B(3k, 2k + 3), C(5k – 1, 5k)
If the points A, B and C are collinear, then
ar (тИЖABC) = 0
CBSE Sample Papers for Class 10 Maths Paper 8 14
CBSE Sample Papers for Class 10 Maths Paper 8 14.1
CBSE Sample Papers for Class 10 Maths Paper 8 14.2
CBSE Sample Papers for Class 10 Maths Paper 8 14.3

Solution 15:
Given, ABCD is trapezium in which
AB || CD || PQ
CBSE Sample Papers for Class 10 Maths Paper 8 15
CBSE Sample Papers for Class 10 Maths Paper 8 15.1

Solution 16:
Let O be the common centre of two concentric circles and let AB be a chord of large circle touching the smaller circle at P.
Construction : Join OP
Since OP is the radius of the smaller circle and AB is tangent to this circle at P,
тИ┤ OP тКе AB
We know that the perpendicualr drawn from the centre of a circle to any chord of the circle bisects the chord.
CBSE Sample Papers for Class 10 Maths Paper 8 16

Solution 17:
Given : Diameter of coin = 1 cm
Radius of coin, r = 0.5 cm
PQ = QR = RS = PS
= 2 x 0.5 = 1 cm
CBSE Sample Papers for Class 10 Maths Paper 8 17
CBSE Sample Papers for Class 10 Maths Paper 8 17.1
CBSE Sample Papers for Class 10 Maths Paper 8 17.2

Solution 18:
Given : Diameter of hemispherical tank = 3 cm
Radius, r = \(\\ \frac { 3 }{ 2 } \)
Now, Volume of hemispherical tank = \(\frac { 2 }{ 3 } { \pi r }^{ 3 } \)
CBSE Sample Papers for Class 10 Maths Paper 8 18
CBSE Sample Papers for Class 10 Maths Paper 8 18.1
CBSE Sample Papers for Class 10 Maths Paper 8 18.2

Solution 19:
Given, a = 2, an = 50, Sn = 442
We know that
CBSE Sample Papers for Class 10 Maths Paper 8 19
CBSE Sample Papers for Class 10 Maths Paper 8 19.1
CBSE Sample Papers for Class 10 Maths Paper 8 19.2

Solution 20:
We have
\({ \left( \frac { 2x+1 }{ x+1 } \right) }^{ 4 }-13{ \left( \frac { 2x+1 }{ x+1 } \right) }^{ 2 }+36=0\)
let
\({ \left( \frac { 2x+1 }{ x+1 } \right) }^{ 2 }=a\)
CBSE Sample Papers for Class 10 Maths Paper 8 20
CBSE Sample Papers for Class 10 Maths Paper 8 20.1

Solution 21:
Given : cosec A + cot A = p ….(i)
We know,
cosec┬▓ A – cot┬▓ A = 1
=> (cosec A + cot A) (cosec A – cot A) = 1 [тИ╡ a┬▓ – b┬▓ = (a+b)(a-b)]
=> (p) (cosec A – cot A) = 1
CBSE Sample Papers for Class 10 Maths Paper 8 21

Solution 22:
CBSE Sample Papers for Class 10 Maths Paper 8 22
CBSE Sample Papers for Class 10 Maths Paper 8 22.1

SECTION-D

Solution 23:
Let PO be the lighthouse and A, B be the position of the two ships.
PO = h m
Angle of depression of ship at the point A = a┬░.
Angle of depression of ship at the point B = P┬░.
In тИЖOPA, тИаP = 90┬░
CBSE Sample Papers for Class 10 Maths Paper 8 23
CBSE Sample Papers for Class 10 Maths Paper 8 23.1
CBSE Sample Papers for Class 10 Maths Paper 8 23.2
CBSE Sample Papers for Class 10 Maths Paper 8 23.3

Solution 24:
Steps of construction :
(1) Draw a line segment BC = 8 cm and make a right angle (тИаDBC) at the point B.
(2) Taking B as centre and radius 6 cm, draw an arc which intersect BD at the point A.
(3) Join AC. Thus, тИЖABC is obtained.
(4) Draw a ray BX such that тИаCBX is an acute angle.
(5) Make four points B1 B2, B3 and B4 such that
BB1 = B1B2 = B2B3 = B3B4
(6) Join B4C.
(7) Through the point B3, draw a line B3C’ parallel to B4C which intersect the line segment BC at the point C’.
(8) Through the point C’, draw a parallel line CтАЩA’ parallel to CA which intersect the line segment BA at the point AтАЩ.
(9) Thus, тИЖA B’C’ is the required triangle whose sides are \(\\ \frac { 3 }{ 4 } \) of corresponding sides of тИЖABC.
CBSE Sample Papers for Class 10 Maths Paper 8 24

Solution 25:
Converse of Pythagoras Theorem : In a triangle, if the square of one side is equal to the sum of the squares of the other two sides, then the angle opposite to the side is a right angle.
Given : A triangle ABC such that AC┬▓ = AB┬▓ + BC┬▓
Construction : Construct a triangle DEF such that
DE = AB, EF = BC and тИаE = 90┬░.
Proof : Since, тИЖDEF is a right angled triangle with right angle at E, therefore, by Pythagoras theorem, we have
CBSE Sample Papers for Class 10 Maths Paper 8 25
CBSE Sample Papers for Class 10 Maths Paper 8 25.1
CBSE Sample Papers for Class 10 Maths Paper 8 25.2

Solution 26:
Given :
Radius of bowl, r = 9 cm
For cylindrical bottle :
Radius, R = 1.5 cm
Height, H = 4 cm
CBSE Sample Papers for Class 10 Maths Paper 8 26
CBSE Sample Papers for Class 10 Maths Paper 8 26.1

Solution 27:
Let the speed of boat in still water be x km/h and speed of the stream be y km/hr.
.’. Speed of the boat in upstream = x – y
Speed of the boat in downstream = x + y
CBSE Sample Papers for Class 10 Maths Paper 8 27
CBSE Sample Papers for Class 10 Maths Paper 8 27.1
CBSE Sample Papers for Class 10 Maths Paper 8 27.2
CBSE Sample Papers for Class 10 Maths Paper 8 27.3

Solution 28:
Given :
Total amount = Rs 700
No. of cash prizes = 7
Each prize is Rs 20 less than preceding prize.
Therefore, the list of value of prizes form an A.P.
Let the first cash prize = Rs a
Difference between two consecutive prize = – Rs 20
CBSE Sample Papers for Class 10 Maths Paper 8 28
CBSE Sample Papers for Class 10 Maths Paper 8 28.1

Solution 29:
Given
L.H.S = \(\frac { sinA-cosA+1 }{ sinA+cosA-1 } \)
CBSE Sample Papers for Class 10 Maths Paper 8 29

Solution 30:
CBSE Sample Papers for Class 10 Maths Paper 8 30
CBSE Sample Papers for Class 10 Maths Paper 8 30.1

We hope the CBSE Sample Papers for Class 10 Maths Paper 8 help you. If you have any query regarding CBSE Sample Papers for Class 10 Maths Paper 8, drop a comment below and we will get back to you at the earliest.

CBSE Sample Papers for Class 10 Maths Paper 8 Read More ┬╗

CBSE Sample Papers for Class 10 Maths Paper 2

CBSE Sample Papers for Class 10 Maths Paper 2

CBSE Sample Papers for Class 10 Maths Paper 2

These Sample papers are part of CBSE Sample Papers for Class 10 Maths. Here we have given CBSE Sample Papers for Class 10 Maths Paper 2.

Time Allowed : 3 hours
Maximum Marks : 80

General Instructions

  • All questions are compulsory.
  • The question paper consists of 30 questions divided into four sections – A, B, C and D.
  • Section A contains 6 questions of 1 mark each. Section B contains 6 questions of 2 marks each. Section C contains 10 questions of 3 marks each. Section D contains 8 questions of 4 marks each.
  • There is no overall choice. However, an internal choice has been provided in 4 questions of 3 marks each and 3 questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
  • Use of calculator is not permitted.

SECTION-A

Question 1.
What are the coordinates of the centroid of the triangle ABC if A(2,3), B(5, 8) and C(2, 1) ? [1]

Question 2.
From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm. Find the radius of the circle.┬а[1]

Question 3.
Express 4 as a sum of two irrational numbers.┬а┬а[1]

Question 4.
Check if the system 3x – y – 8 = 0, 4x – 12y + 16 = 0 has infinite solution.┬а┬а[1]

Question 5.
Check if x = 1 is a solution of 3x2 – 2x – 1 = 0.┬а┬а[1]

Question 6.
тИЖPQR is right angled at Q. If tan R = \(\frac { 24 }{ 7 } \), find sec R and sin R.┬а┬а[1]

SECTION-B

Question 7.
If the points A(1, 2), O(0, 0) and C(a, b) are collinear, then find the relationship between
‘a’ and ‘b’.┬а┬а[2]

Question 8.
There is a circular path around a sports field. Sania takes 24 minutes to drive one round of the field, while Ravi takes 16 minutes for the same. Suppose they both start at the same point and at the same time, and go in the same direction. After how many minutes will they meet again at the starting point ?┬а┬а[2]

Question 9.
What is the probability that a number selected from the numbers 1, 2, 3,…., 25 is a prime number, when each of the given numbers is equally likely to be selected ?┬а┬а[2]

Question 10.
If a number x is chosen at random from the numbers -2,-1, 0, 1, 2, what is the probability that x2 < 2 ?┬а[2]

Question 11.
Find the values of for which x2 – 2x + k = 0 has real roots.┬а┬а[2]

Question 12.
Write the value of a30 – a10 for the A.P. 4, 9, 14, 19, 24,….┬а┬а[2]

SECTION-C

Question 13.
If the point A(2, – 4) is equidistant from P(3, 8) and Q(- 10, y), find the value of y. Also find the distance PQ.┬а[3]

Question 14.
If тИЖABC ~ тИЖDEF and AL and DM are their corresponding angle bisector segments then show that
\(\frac { AL }{ DM } =\frac { AB }{ DE } =\frac { BC }{ EF } =\frac { AC }{ DF } \)┬а┬а[3]

Question 15.
Prove that the tangents drawn at the ends of a diameter of a circle are parallel.┬а┬а[3]

Question 16.
Find the LCM of 396, 429 and 561 by prime factorization method.┬а┬а[3]

Question 17.
The diameters of the front and rear wheels of a tractor are 80 cm and 2 m respectively. Find the number of revolutions that rear wheel will make to cover the distance which the front wheel covers in 140 revolutions.┬а┬а[3]
OR
In the given figure, OACB is a quadrant of a circle with centre O and radius 3.5 cm. If OD = 2 cm, find the area of the shaded region.
CBSE Sample Papers for Class 10 Maths Paper 2 Q 17.

Question 18.
A rectangular water tank of base 11 m x 6 m contains water up to a height of 5 m. If the water in the tank is transferred to a cylindrical tank of radius 3.5 m, find the height of the water level in the tank.┬а┬а[3]
OR
A copper rod of diameter 1 cm and length 8 cm is drawn into a wire of length 18 m of uniform thickness. Find the thickness of the wire.┬а┬а[3]

Question 19.┬а
Find the zeroes of the quadratic polynomial x2 + 13x + 30, and verify the relationship between the zeroes and the coefficients.┬а┬а[3]

Question 20.
The first and the last terms of an A.P. are 17 and 350 respectively. If the common difference is 9, how many terms are there and what is their sum ?┬а┬а[3]
OR
How many numbers lie between 10 and 300, which when divided by 4 leave a remainder 3 ?

Question 21.
CBSE Sample Papers for Class 10 Maths Paper 2 Q 21.

Question 22.
Find median for the following data :┬а┬а[3]

Classes10-2930-4950-6970-8990 -109
Frequency184648

SECTION-D

Question 23.
Construct a triangle ABC in which AC = AB = 4.5 cm and тИаA = 90┬░, then constuct a triangle similar to тИЖABC with its sides equal to (\(\frac { 5 }{ 4 } \))th of the corresponding sides of тИЖABC.┬а┬а[4]

Question 24.
The angle of elevation of the top of a tower from a point A on the ground is 30┬░. On moving a distance of 20 metre towards the foot of the tower to a point B, the angle of elevation increases to 60┬░. Find the height of the tower and the distance of the tower from the
point A.┬а┬а[4]
OR
As observed from the top of a lighthouse, 100 m above sea level, the angle of depression of a ship, sailing directly towards it, changes from 30┬░ to 45┬░. Determine the distance travelled by the ship during the period of observation.┬а[4]

Question 25.
In figure, P is the mid-point of BC and Q is the mid-point of AP. If BQ when produced meets AC at R, prove that RA = \(\frac { 1 }{ 3 } \)CA┬а┬а[4]
CBSE Sample Papers for Class 10 Maths Paper 2 Q 25.

Question 26.
A milk container of height 16 cm is made of metal sheet in the form of a frustum of a cone with radii of its lower and upper ends as 8 cm and 20 cm respectively. Find the cost of milk at the rate of ? 22 per litre which the container can hold.┬а┬а[4]
OR
From a solid cylinder whose height is 2.4 cm and diameter 1.4 cm, a conical cavity of the same height and same diameter is hollowed out. Find the total surface area of the remaining solid to the nearest cm2.

Question 27.
In a rectangle if length is increased and breadth is reduced by 2 metre, the area is reduced by 28 sq. m. If length is reduced by 1 metre and breadth is increased by 2 metre, the area increased by 33 sq. m. Find the length and breadth of the rectangle.┬а┬а[4]
OR
Out of group of swans, \(\frac { 7 }{ 2 } \) times the square root of the total number are playing on the shore of a pond. The remaining two are swimming in water. Find the total number of swans.┬а┬а[4]

Question 28.
The students of a school decided to beautify the school on the Annual Day by fixing colourful flags on the straight passage of the school. They have 27 flags to be fixed at intervals of every 2 m. The flags are stored at the position of the middle most flag. Ruchi was given the responsibility of placing the flags. Ruchi kept her books where the flags were stored. She could carry only one flag at a time. How much distance did she cover in completing this job and returning back to collect her books ?┬а┬а[4]

Question 29.┬а┬а
Show \(\frac { { cot }^{ 2 }A }{ 1+cosecA } +1=cosec A\)┬а┬а[4]

Question 30.
Find the value of p, if the mean of the following distribution is 7.5.┬а┬а[4]

X35791113
f6815p84

SOLUTIONS
Section – A

Answer 1.
Here A(2,3) B(5,8) and C(2,1).
CBSE Sample Papers for Class 10 Maths Paper 2 Ans 1.

Answer 2.
Let, radius of circle OP = r
тИ╡ Tangent to a circle is perpendicular to the radius
тИ┤ In тИЖPOQ, using Pythagoras theorem
CBSE Sample Papers for Class 10 Maths Paper 2 Ans 2.
OQ┬▓ = PQ┬▓ + OP┬▓
25┬▓ = 24┬▓ + r┬▓
тЗТ r┬▓ = 25┬▓ – 24┬▓
тЗТ r┬▓ = (25 + 24)(25 – 24)
тЗТ r┬▓ = 49
тЗТ r = 7 cm

Answer 3.
We know that (2 + тИЪ3) and (2 – тИЪ3) are irrational numbers
(2 + тИЪ3) + (2 – тИЪ3)
2 + тИЪ3 + 2 – тИЪ3 = 4

Answer 4.
Given system of equations is,
3x – y – 8 =0
and 4x – 12y + 16 = 0
For infinite solution
CBSE Sample Papers for Class 10 Maths Paper 2 Ans 4.

Answer 5.
We have
3x┬▓ – 2x – 1 = 0
If x = 1,
Then,
3 ├Ч (1)2 – 2 ├Ч 1 – 1 = 0
3 – 2 – 1 = 0
3 – 3 = 0
0 = 0
L.H.S = R.H.S
Hence, x = 1 is a solution of the given equation.

Answer 6.
We have,
tan R =\(\frac { 24 }{ 7 } \)
From тИЖPQR, tan R = \(\frac { PQ }{ RQ } \)
In тИЖPQR, PR┬▓ = PQ┬▓ + RQ┬▓
PR┬▓ = 24┬▓ + 7┬▓
PR┬▓ = 576+ 49
PR┬▓ = 625
PR = тИЪ625
PR 25
CBSE Sample Papers for Class 10 Maths Paper 2 Ans 6.
sec R = \(\frac { PR }{ RQ } =\frac { 25 }{ 7 }\)
sin R = \(\frac { PQ }{ PR } =\frac { 24 }{ 25 } \)

SECTION-B

Answer 7.
We have, A( 1, 2), O(0, 0) and C(a, b) are collinear.
Since, the given points are collinear, therefore, area of triangle formed by them is zero.
i.e., ar (тИЖAOB) = 0
тЗТ \(\frac { 1 }{ 2 } \) x1(y2 – y3) + x2(y3 – yx) + x3{yx – y2) 1=0
тЗТ \(\frac { 1 }{ 2 } \) 1(0 – b) + 0(b – 2) + a(2 – 0) i =0
тЗТ – b + 2a = 0
тЗТ b = 2a.

Answer 8.
Given, Sania takes 24 minutes for one round and Ravi takes 16 minutes for one round. It means that Ravi takes lesser time than Sonia to drive one round of field.
Now,
Required time = L.C.M. of the time taken by Sonia and Ravi for completing one round
= L.C.M. of 24 and 16
тИ╡ 24 = 23 x 3 and 16 = 24
тИ┤ L.C.M. = 24 x 3 = 16 x 3 = 48
Hence, Ravi and Sonia will meet each other at the starting point after, 48 minutes.

Answer 9.
Numbers are 1, 2, 3,…., 25.
тИ┤ Total numbers n(S) = 25
Prime numbers between 1 to 25 are 2, 3, 5, 7, 11, 13, 17, 19, 23
тЗТ Total prime numbers = n(E) = 9
тИ┤ P(Prime Number) = \(\frac { n(E) }{ n(S) } \quad \frac { 9 }{ 25 }\)

Answer 10.
Given numbers are -2,-1, 0, 1, 2
тЗТ Total numbers = 5
Here, (-2)2 = 4, (-1)2 = 1, 02 = 0, 12 = 1, 22 = 4
For x = – 1, 0, 1┬а x2┬а< 2
тЗТ Favourable outcomes = 3
p(x┬▓ < 2) = \(\frac { Favourable\quad outcomes }{ Total\quad outcomes } = \frac { 3 }{ 5 } \)

Answer 11.
Given equation is,
x┬▓ – 2x + k = 0
Here a = 1, b = -2, c = k
We know, D = b2 – 4ac
тЗТ D = (-2)2 – 4 ├Ч 1 ├Ч k
тЗТ D = 4 – 4k

For real roots,
D =0
тЗТ 4 – 4 k =0
тЗТ – 4k = – 4
тЗТ k = \(\frac { -4 }{ -4 } \)
тЗТ k = 1

Answer 12.
Given A.P. is, 4, 9, 14, 19, 24
Here, a = 4
d = 9 – 4=5
We know
an┬а= a + (n – 1) d
a30┬а= 4 + (30 – 1) 5
тЗТ a30 = 4 + 29 x 5
тЗТ a30 = 4 + 145
тЗТ a30 = 149
And an = a + (10 – 1) d = 4 + (30 -1 )5
= 4 + (9 x 5) = 4 + 45
тЗТ a30 = 49
тИ┤ a30 – a10 = 149 – 49
= 100

SECTION-C

Answer 13.
CBSE Sample Papers for Class 10 Maths Paper 2 Ans 13.
AP =AQ
тЗТ AP2 = AQ2
Let (x1, y1) = (2, – 4)
(x2, y2) = (3, 8)
(x3, y3) = (-10, y)
Then,
(x2 – x1)2 + (y2 – y1)2 = (x3 – x1 )2 + (y3 – x1)2
(3 – 2)2 + (8 + 4)2 = (-10 – 2)2 + (y + 4)2
(1)2 + (12)2 = (12)2 + (y + 4)2
1 + 144 = 144 + (y + 4)2
1 = (y + 4)2
┬▒1 = y+4
тЗТ y = -1 – 4 or y = 1 – 4
тЗТ y=-5 or y = -3
CBSE Sample Papers for Class 10 Maths Paper 2 Ans 13.1

Answer 14.
CBSE Sample Papers for Class 10 Maths Paper 2 Ans 14.

Answer 15.
Given : A circle with centre at O. AB and CD are tangents drawn at the end of diameter.
To prove : AB || CD
Proof : We know that a tangent at any point of a circle is perpendicular to the radius throught the point of contact.
тИ┤ OM тКе AB and ON тКе CD
CBSE Sample Papers for Class 10 Maths Paper 2 Ans 15.
тЗТ тИаOMB = 90┬░
тИаOMB = 90┬░
тИаOND = 90┬░
тИаONC = 90┬░
тИаOMA = тИаOND
тИаOMB = тИаONC
These are the pair of alternate interior angles.
Since, alternate angles are equal, the line AB and CD are parallel to each other.
i.e, AB || CD

Answer 16.
CBSE Sample Papers for Class 10 Maths Paper 2 Ans 16.
Prime factorisation of the given numbers are,
396 = 2 ├Ч 2 ├Ч 3 ├Ч 3 ├Ч 11 = 2┬▓ ├Ч 3┬▓ ├Ч 11
429 = 3 ├Ч 143
561 = 3 ├Ч 187
тИ┤ LCM (396, 429, 561) = 2┬▓ ├Ч 3┬▓ ├Ч 143 ├Ч 187 ├Ч 11 = 10589436

Answer 17.
Given, Diameter of front wheel = 80 cm
тИ┤ Radius, r = \(\frac { 80 }{ 2 }\) = 40 cm
and Diameter of rear wheel = 2 m
тИ┤ Radius, R = \(\frac { 2 }{ 2 }\) = 1 m = 100 cm
Number of revolutions covered by front wheel = 140.
Let the number of revolutions covered by rear wheel be n.
According to the question,
Distance covered by real wheel in n revolutions = Distance covered by front wheel in 140 revolutions
тЗТ n x 2╧АR = 140 x 2╧Аr
n ├Ч R = 140 x r
n x 100 = 140 x 40
n = \(\frac { 140\times 40 }{ 100 }\) = 56
Thus, the number of revolutions covered by rear wheel is 56.
OR
Given : Radius, OA = 3.5 cm
and OD = 2 cm
Area of shaded region = Area of quadrant OACB – Area of тИЖDOB
CBSE Sample Papers for Class 10 Maths Paper 2 Ans 17.
Hence, area of shaded region is 6-125 cm2.

Answer 18.
Given : Length of cuboid, l = 6 m
Breadth of cuboid, b = 11 m
Height of cuboid, h = 5 m
Radius of cylinder, r = \(\frac { 3.5 }{ 10 } \) m = \(\frac { 7 }{ 2 } \) m
Let height of water level in the cylindrical tank be H m
Since, water in rectangular tank is transferred to cylindrical tank.
тИ┤ Volume of cuboid = Volume of cylinder of height H
l ├Чb ├Ч h =╧Аr┬▓H
6 x 11 x 5 = \(\frac { 22 }{ 7 } \times \frac { 7 }{ 2 } \times \frac { 7 }{ 2 }\) ├Ч H
\(\frac { 30\times 2 }{ 7 } \) = H
H = \(\frac { 60 }{ 7 }\) m = 8.57 m.
OR
Given : Diameter of the copper rod = 1 cm
So, Radius (r) of the copper rod = 1/2 cm
Length of copper rod, h = 8 cm
Length of wire, H = 18 m = 18 x 100 cm
Let R be the radius of the cross-section (circular) of the wire.
We know that volume of cylinder = ╧Аr┬▓h Now, according to the question
Now, according to the question,
CBSE Sample Papers for Class 10 Maths Paper 2 Ans 18.

Answer 19.
Let p(x) = x┬▓ + 13x + 30
= x┬▓ + 10x + 3x + 30
= x(x + 10) + 3(x + 10)
=(x + 3) (x + 10)
тЗТ x + 3 = 0; x + 10 = 0
тЗТ x = – 3, x = – 10
Let ╬▒ = – 3
and ╬▓ = – 10
Now, ╬▒ + ╬▓ = \(-\frac { b }{ a }\)
– 3 – 10 = \(-\frac { (-13) }{ 1 } \)
– 13 = – 13
and ╬▒╬▓ = \(\frac { c }{ a } \)
(-3) (-10) = \(\frac { 30 }{ 1 }\)
30 = 30
Thus, the releationship between the zeroes and coefficients is verified.

Answer 20.
Given : First term of A.P., a = 17
Last term, l = 350
Common difference, d = 9
We know,
an = a + (n – 1) d
тИ╡ 350 is the nth term of given A.P.,
тИ╡ 350 = 17 + (n – 1) 9
350 – 17 = (n – 1) 9
333 = (n – 1) 9
\(\frac { 333 }{ 9 } \) = n – 1
37 = n – 1
37 + 1 =n
38 = n
We know that sum of n terms of A.P is given as,
Sn = \(\frac { n }{ 2 } \)[a + l]
тЗТ S38 = \(\frac { 38 }{ 2 }\)[17 + 350]
= 19 [367] = 6973
n = 38 and Sn = 6973.
OR
The first number greater than 10 which when divided by 4 leaves a remainder 3 is 11.
So, the next number will be 11 + 4 = 15
The other numbers will be 15 + 4 = 19, 19 + 4 = 23….
Thus, A.P. = 11, 15, 19, 23 …..
The last term of this A.P. will be 299.
We have to find n. i.e., number of terms in the A.P.
We know,
a + (n – 1 )d = an
тЗТ 11 + (n – 1)4 =299
тЗТ 11 + 4n – 4 = 299
тЗТ 7 + 4n =299
тЗТ 4n = 299 – 7
тЗТ 4n = 292
тЗТ n = \(\frac { 292 }{ 4 } \)
тЗТ n = 73
тИ┤ numbers lie between 10 and 300 which divided by 4 leaves a remainder 3.

Answer 21.
CBSE Sample Papers for Class 10 Maths Paper 2 Ans 21.

Answer 22.

ClassFrequency (/)c.f.
10-291818
30-49422
50-69628
70-89432
90 -109840

N = 40 тЗТ \(\frac { N }{ 2 } \) = 20.
Frequency just greater than 20 is 22.
So, 30 – 49 will be median class.
Here, l = 30
╞Т = 4
c ╞Т = 18
h = 9
CBSE Sample Papers for Class 10 Maths Paper 2 Ans 22.

SECTION-D

Answer 23.
Steps of construction :

  • Draw a line segment AB = 4-5 cm
  • Construct тИаYAB = 90┬░
  • Taking A as centre and radius 4-5 cm, draw an arc intersecting AY at C.
  • Join BC. Thus, тИЖABC is obtained. Y
  • Draw any ray AX making acute angle with AB on the side opposite to the vertex A.
  • Mark 5 points namely A1, A2, A3, A4, A5 on AX such that, AA1 = A1A2 = A2A3 = A3 A4 = A4 A5
  • Join A4 to B and draw a line through A5 parallel to A4B intersecting extended AB at B’
  • Draw a line B’C’ parallel to BC to intersect AY at C’.

CBSE Sample Papers for Class 10 Maths Paper 2 Ans 23.
Thus, тИЖAB’CтАЩ is the required triangle whose sides are \(\frac { 5 }{ 4 }\) times of the corresponding sides of тИЖABC.

Answer 24.
Let CD be the tower of height y m.
Let BD = x.
In тИЖCAD, we have
CBSE Sample Papers for Class 10 Maths Paper 2 Ans 24.
tan 30┬░ = \(\frac { CD }{ AD } \)
\(\frac { 1 }{ \sqrt { 3 } } \) = \(\frac { y }{ 20+x } \)
20 + x = yтИЪ3
x = yтИЪ3 – 20
In тИЖCBD, we have
tan 60┬░= \(\frac { CD }{ BD } \)
тИЪ3 = \(\frac { y }{ x } \)
тЗТ xтИЪ3 = y
Putting the value of y in equation (i), we get
x = (xтИЪ3) (тИЪ3) – 20
x = 3x – 20
20 = 3x – x
20 = 2x
\(\frac { 20 }{ 2 } \) = x
10 = x
Putting the value of x in equation (ii), we get
10тИЪ3 = y
тЗТ y = 10 ├Ч 1.732 = 1.732
Hence, distamce of the foot of tower from point A
= 20 + x = 20 + 10 = 30 m
and Height of tower = 17.32 m

OR

Let A and B be the two positions of the ship. Let d be the distance travelled by ship during the period of observation i.e. AB = d metres.
Period of observation i.e. AB = d meters.
Let the observer be at O, the top of the light house PO.
It is given that PO = 100 m and the angles of depression from O of A and B are 30┬░ and 45┬░ respectively.
тИ┤ тИаOAP = 30┬░ and тИаOBP = 45┬░
CBSE Sample Papers for Class 10 Maths Paper 2 Ans 24.1
In тИЖOPA, we have
tan 45┬░ = \(\frac { OP }{ BP } \)
тЗТ 1 = \(\frac { 100 }{ BP }\)
тЗТ BP = 100 m
In ╬ФOPA, we have
тЗТ tan 30┬░ = \(\frac { OP }{ AP } \)
тЗТ \(\frac { 1 }{ \sqrt { 3 } } \) = \(\frac { 100 }{ d+BP }\)
тЗТ d + BP = 100тИЪ3
тЗТd + 100 = 100тИЪ3 [тИ╡ BP = 100 m]
тЗТ d = 100тИЪ3 – 100
тЗТ d = 100(тИЪ3 – 1)
= 100(1.732 – 1) = 73.2 m
Hence, the distance travelled by the ship from A to B is 73.2 m

Answer 25.
Given : тИЖABC in which P is the mid-point of BC, Q is the mid-point of AP, such that BQ produced meets AC at R.
To prove : RA = \(\frac { 1 }{ 3 } \) CA.
CBSE Sample Papers for Class 10 Maths Paper 2 Ans 25
Construction : Draw PS || BR, meeting AC at S.
Proof : In тИЖBCR, P is the mid-point of BC and PS || BR.
тИ┤ By basic proportionality theorem, S is the mid-point of CR.
тЗТ CS = SR
Similarly, in тИЖAPS, Q is the mid-point of AP and QR || PS.
тИ┤ R is the mid-point of AS.
тЗТ AR=RS
From equations (i) and (ii), we get
AR =RS = SC .
тЗТ AC =AR +RS +SC = 3 AR
AR = \(\frac { 1 }{ 3 } \) AC = \(\frac { 1 }{ 3 } \) CA

Answer 26.
Given :
Radii of upper end of frustum, R = 20 cm
Radii of lower end of frustum, r = 8 cm
Height of frustum, h = 16 cm
CBSE Sample Papers for Class 10 Maths Paper 2 Ans 26.1
We know that
1 cm3 = 0.001 litre
тЗТ Volume of container = 10.46 litre
Cost of 1 litre milk = тВ╣ 22
тЗТ Total cost = 22 ├Ч 10.46 = тВ╣ 230.12
OR
Let r cm be the radius and h cm be height of the cone .
Then r = 0.7 cm and h = 2.4 cm
let r1 cm be the radius, l cm be the slant height and h1 cm be the height of the cone.
Then r1 = 0.7 cm and h1 = 2.4 cm
CBSE Sample Papers for Class 10 Maths Paper 2 Ans 26.2
CBSE Sample Papers for Class 10 Maths Paper 2 Ans 26.3
Now, total surface area of the remaining solid
= C.S.A. of cylinder + C.S.A. of cone + Area of base of the cylinder
= 2╧Аrh + ╧Аr1l + ╧Аr2
= 2╧Аrh + ╧Аr1 + ╧Аr2┬а ┬а[тИ╡ r = r1]
= [ 2 ├Ч \(\frac { 22 }{ 7 } \) ├Ч 0.7 ├Ч 2.4 + \(\frac { 22 }{ 7 } \) ├Ч 0.7 ├Ч 2.5 + \(\frac { 22 }{ 7 } \) ├Ч 0.7 ├Ч 0.7 ] cm2
= ( 10.56 + 5.5 + 1.54 )cm2 = 17.6 cm2

Answer 27.
Let Length of rectangle = x
and Breadth of rectangle = y
тИ┤ Area of rectangle = xy
According to question,
(x + 2)(y – 2) = xy – 28
and (x – 1) (y + 2) = xy + 33
From equation (i), we have
xy – 2x + 2y – 4 = xy – 28
– 2x + 2y = – 28 + 4
– 2x + 2y = – 24
2x – 2y = 24
x – y =12
x =12 + y
From equation (ii), we have
(x -1) (y + 2) = xy + 33
xy + 2x – y – 2 = xy + 33
2x – y =33 + 2
2x – y =35
Putting the value of x from equation (iii) to equation (iv)
2(12 + y) – y =35
24 + 2y – y =35
24 + y = 35
y = 35 – 24 =11
Putting the value y in equation (i), we get
x = 12 + 11 = 23
Hence, Length of rectangle = 19 m
Breadth of rectangle = 11 m
OR
Let the total number of swans be x2.
Then, number of swans playing at the pond shore
= \(\frac { 7 }{ 2 } \sqrt { { x }^{ 2 } } =\frac { 7 }{ 2 } x\)
Number of swans playing in water = 2
Total number of swans = No. of swans playing on the shore + No.of swans playing in water
тЗТ x┬▓ = \(\frac { 7 }{ 2 } \)x + 2
тЗТ 2x┬▓ = 7x + 4
тЗТ 2x┬▓ – 7x – 4 = 0
тЗТ 2x┬▓ – 8x + x – 4 = 0
тЗТ 2x(x – 4) + (x – 4) = 0
тЗТ (2x + 1) + (x – 4) = 0
тЗТ2x + 1 = 0 or x – 4 = 0
тЗТ x = \(\frac { -1 }{ 2 } \) or x = 4
But x = \(\frac { -1 }{ 2 } \) is not feasible. Thus, x = 4
Hence, number of swans = x┬▓ = 4┬▓ = 16.

Answer 28.
CBSE Sample Papers for Class 10 Maths Paper 2 Ans 28.1
Let A be the middle-most point and 13 flags are fixed at points A1,A2,A3,…. A13, to the left of A and remaining to the right of A.
Distance travelled for fixing and coming back to A for
(i) first flag = (2 + 2)m = 4m = a
(ii) second flag = (4 + 4) m = 8 m = a2
(iii) third flag = (6 + 6) m = 12 m = a3
тИ┤ a1, a2, a3…., form an AP in which
a = 4, a2 = 8, a3 = 12……n = 13
and common difference, d =8 – 4 = 4
S13 = \(\frac { 13 }{ 2 } \)[2 x 4 + (13-1) 4]
= \(\frac { 13 }{ 2 } \)(8 + 48) = \(\frac { 13 }{ 2 } \) ├Ч 56 = 364
тИ┤ Distance travelled to fix 13 flags to the left of A = 364 m.
Similarly, the distance travelled to fix remaining 13 flags to right of A = 364 m
тИ┤ Total distance travelled = 2 ├Ч 364 m = 728 m.

Answer 29.
CBSE Sample Papers for Class 10 Maths Paper 2 Ans 29

Answer 30.

xi╞Тi┬а╞Тixi
3618
5840
715105
9V9p
11888
13452
N=тИС╞Тi = 41 + pтИС╞Тixi= 303 + 9p

We have, тИСfi = 41 + p, тИСfixi = 303 + 9p
But Mean = 7.5
тИ┤ Mean = \(\frac { \Sigma { f }_{ i }{ x }_{ i } }{ \Sigma { f }_{ i } }\)
тЗТ 7.5 = \(\frac { 303+9p }{ 41+p } \)
тЗТ 7.5 ├Ч (41 + p) = 303 + 9p
тЗТ 307.5 + 7.5p = 303 + 9p
тЗТ 9p – 7.5p = 307.5 – 303
тЗТ 1.5p = 4.5
тЗТ p = 3

We hope the CBSE Sample Papers for Class 10 Maths Paper 2 help you. If you have any query regarding CBSE Sample Papers for Class 10 Maths Paper 2, drop a comment below and we will get back to you at the earliest.

CBSE Sample Papers for Class 10 Maths Paper 2 Read More ┬╗

CBSE Sample Papers for Class 10 English Communicative Set 1

CBSE Sample Papers for Class 10 English Communicative Set 1

CBSE Sample Papers for Class 10 English Communicative Set 1

These Sample papers are part of CBSE Sample Papers for Class 10 English Communicative. Here we have given CBSE Sample Papers for Class 10 English Communicative Set 1

Time allowed: 3 hours
Maximum marks: 80

General Instructions

тЭЦ The question papers divided into three sections :
Section A : Reading 20 marks
Section B : Writing and Grammar 30 marks
Section C : Literature 30 marks
тЭЦ All questions are compulsory.
тЭЦ You may attempt any section at a time.
тЭЦ All questions of that particular section must be attempted in the correct order.

SECTION-A : READING
(Attempt all question from this section)

Question 1.
Read the passage given below and answer the questions that follow :

Ship of the Desert

1. Known as “ships of the desert”, camels have been used for transporting goods across deserts for thousands of years. In fact, camels are the only desert animals that can carry heavy loads of goods and travel for a long period of time without food or water. Transportation, however, is not the only benefit that camels can offer us. Desert people also rely on camels for their milk, meat and fur. Even camels’ droppings are usefulтАФdesert people use camels’ manure as fuel.

2. Weighing more than 1,500 pounds, adult camels can reach the height of six feet at their shoulders and seven feet at their humps. Camels have two hoofed toes on each foot, under which a leathery pad links the two toes. When camels walk, they spread their toes as wide apart as possible to prevent their feet from sinking into the sand. The tough, leathery pads under their feet also allow camels to walk on a stony and rough ground. Camels are nicknamed as the “ships of the desert” because they walk like the motion of a rolling boat and move both their feet on one side of their bodies together, then both feet on the other.

3. There are two different species of camelsтАФDromedary and Bactrian. To differentiate one from the other is easy; just count how many humps a camel has ! With just one hump on their backs, Dromedary camels live in North Africa and the Middle East. Bactrian camels have two humps and they exist only in China and Central Asia. Interestingly, camels’ humps are like their secret safe. When there is plenty of food any vegetation in deserts, including thorny twigs and salty plants that other desert animals cannot have, camels overeat and store the extra as fat in their humps. The excessive fat in their humps is like a safety net allowing camels to have enough energy to walk extra miles until they find something to eat.

1.1. Attempt any eight of the following questions on the basis of the passage you have read:┬а┬а[1 x 8 = 8]
(i) Who are known as the ‘ships of the desert ?’
(ii) What are the other benefits of the camel that desert people rely on ?
(iii) What is the height and the weight of a camel ?
(iv) How do camels prevent themselves from sinking in the sand ?
(v) What are the two different species of camels ? .
(vi) Where do Dromedary camels live and how many humps do they have ?
(vii) Where do Bactrian camels exist ?
(viii) Where do camels store their extra fat ?
(ix) How does the extra fat help the camels ?

Question 2.
Read the passage given below and answer the questions that follow:┬а┬а[12]

Tools of Persuasion

1. Persuasion is the art of convincing someone to agree with your point of view. According to the ancient Greek philosopher Aristotle, there are three basic tools of persuasion: ethos, pathos and logos. Ethos is a speaker’s way of convincing the audience that he is a credible source. An audience will consider a speaker credible if he seems trustworthy, reliable and sincere. This can be done in many ways. For example, a speaker can develop ethos by explaining how much experience or education he has in the field. After all, you are more likely to listen to an advice about how to take care of your teeth from a dentist than a firefighter. A speaker can also create ethos by convincing the audience that he is a good person who has his best interests at heart. If an audience cannot trust you, you will not be able to persuade them.

2. Pathos is a speaker’s way of connecting with the emotions of the audience. For example, a speaker who is trying to convince an audience to vote for him might say that he alone can save the country from a terrible war. These words are intended to fill the audience with fear, thus making them want to vote for him. Similarly, a charity organisation that helps animals might show an audience the pictures of injured dogs and cats. If the audience feels bad for the animals, they will be more likely to donate money.

3. Logos is the use of facts, information, statistics or other evidences to make your argument more convincing. An audience will be more likely to believe you if you have data to back up your claims. For example, a commercial for soap might tell you that laboratory tests have shown that their soap kills all 100% of the bacteria living on your hands. Presenting evidence is much more convincing than simply saying, “our soap is the best!”

4. Use of logos can also increase a speaker’s ethos; the more facts a speaker includes in his argument, the more likely you are to think that he is educated and trustworthy. Although ethos, pathos and logos all have their strengths, they are often most effective when they are used together. Indeed, most speakers use a combination of ethos, pathos and logos to persuade their audiences. The next time you listen to a speech, watch a commercial, or listen to a friend trying to convince you to lend him some money, be on the lookout for these ancient Greek tools of persuasion.

2.1. On the basis of your reading of the passage, answer any four of the following questions in
about┬а30-40 words each:┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а [2 x 4 = 8]
(i) What are the tools one can use for persuasion ?
(ii) How can a speaker evoke fear in the audience ?
(iii) How do numbers help in convincing people to do something ? Give an example.
(iv) Why is it that people often give importance to education ?
(v) How can a speech be very effective ?

2.2. On the basis of your reading of the passage, fill any two of the following blanks with
appropriate words/ phrases.┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а [1 x 2 = 2]
(i) An audience will consider a speaker credible if he seems ……….
(ii) Logos is the use of facts …………
(iii) Most speakers use a combination of……….

2.3. Attempt any two of the following. Find out the words that mean the same as below:
[1 x 2 = 2]
(i) Trustworthy (Paragraph 2)
(ii) Influence (Paragraph 3)
(iii) Indication (Paragraph 4)

SECTION-B : WRITING AND GRAMMAR
(Attempt all question from this section)

Question 3.
(a) You are Rajesh Kumar living at 51,7th Cross Street, OMBR Layout and Bengaluru 43. The
residents of your area are facing a lot of inconvenience due to poor maintenance of the public park of your locality. Write a letter to the editor of a local daily drawing the attention of the concerned higher authorities towards the problem and requesting them to solve it.┬а ┬а ┬а ┬а ┬а[8]

OR

(b) Write the letter to Jasmeet Traders & Co., Furniture Manufacturers, Haryana as the Principal, Vaidik Kanya Public School, Haryana placing an order for school furniture.

Question 4.
Write a short story, in about 200-250 words, with any one set of the cues given below. Give a suitable title to the story.┬а┬а[10]
No one would believe what happened that night ……….

OR

Storms were certain that night but it wasn’t the weather that caused the turmoil…….

Question 5.
Fill in any four of the following blanks choosing the most appropriate option from the ones given below. Write the answers in your answer-sheet against the correct blank numbers.┬а┬а[1 x 4 = 4]
(a) We went out…………….the fact that it was raining.
(i) despite
(ii) in spite
(iii) even as

(b) ………..she has got the right qualifications, she lacks experience.
(i) in spite of
(ii) although
(iii) even as

(c) He told me…………he loved me, but he was lying.
(i) that
(ii) what
(iii) so

(d) ………..you know, I work hard.
(i) as
(ii) that
(iii) since

(e) you focus on your studies; you will not pass.
(i) unless
(ii) if
(iii) whether

Question 6.
In the following passage one word has been omitted in each line. Write the missing word, in any four sentences of the given paragraph, along with the word that comes before and the word that comes after it in the space provided.┬а ┬а┬а[1 x 4 = 4]
Cbse sample papers english set 1 Q.6

Question 7.
Rearrange any four of the following word clusters to make meaningful sentences.┬а[1 x 4 = 4]
(a) ship/ violently/ the/ storm/ rocked/ the
(b) masterpiece/ artist/ painstakingly/ the/ his/ worked/ at
(c) gift/ free/ a/dad/ offered/ firm/ by/ the/ was.
(d) i/ read/ paper/ in/ the/ burglar/ been/ caught/ had/ the/ that.
(e) nightfall/ began/ cricketers/ the/ at/ their/ piercing/ calls.

SECTION-C : LITERATURE
(Attempt all question from this section)

Question 8.
Read the extract given below and answer the questions that follow. Write the answers in your
answer sheets in one or two lines only.┬а┬а[1 x 4= 4]
(a) The ice was here, the ice was there,
The ice was all around :
It cracked and growled, and roared and howled,
i Like noises in a swound.
(i) What are the sailors surrounded by ?
(ii) List the adjectives used to describe the crunching noise of ice.
(iii) What are the sailors experiencing ? ‘
(iv) Find the synonym of’rumbled.’

OR

(b) Caesar: I am ashamed I did yield to them.
(i) What is Caesar ashamed about ?
(ii) What does Caesar decides to do ?
(iii) What made Caesar decide to go out to the Senate ?
(iv) Find the synonym of the word’embarrassed.’

Question 9.
Answer any four of the following questions in 30-40 words each:┬а ┬а [2 x 4 = 8]
(i) How did the author react when he drove Nicola and Jacopo back to the city ?
(ii) Why Lavinia did not get upset on seeing Helen ‘the ghost’ ?
(iii) How can you say that the frog was very determined in his singing ?
(iv) What role does Victoria play in ‘The Dear Departed ?’
(v) What were Michael’s thoughts on how Sebastian entered the computer games ?

Question 10.
Attempt any one out of the two following long answer type questions in 100-120 words.┬а┬а[8]
(a) The frog has a good self-image. Discuss how he thrives even after the nightingale dies.

OR

(b) Discuss the fickleness of the mob in the play ‘Julius Caesar’.

Question 11.
(a) Answer the following question based on prescribed novel text for extended reading in
about 200-250 words.┬а ┬а ┬а ┬а┬а[10]

The Diary of a Young Girl

(i) Discuss Anne Frank’s early entries that reveal a bubbly girl of thirteen and her awareness of reality.

OR

(ii) Discuss the theme of loneliness in adolescence in Anne Frank’s Diary.

(b) Answer the following question based on the prescribed novel text for extended reading in about 200-250 words.

The Story of My Life

(i) Discuss the “The Frost King Incident” as given in the ‘The Story of My Life’ by Helen Keller.

OR

(ii) How did Dr. Alexander Graham Bell influence Helen Keller’s life ?

ANSWERS
SECTION-A

Answer 1.
1.1
(i) Camels are known as the ships of the desert.
(ii) Desert people also rely on camels for their milk, meat and fur.
(iii) Adult camels weigh more than 1,500 pounds and can reach a height of six feet at their shoulders and seven feet at their humps.
(iv) When camels walk, they spread their toes as wide apart as possible to prevent their feet from sinking into the sand.
(v) The two different species of camels are Dromedary and Bactrian.
(vi) Dromedary camels live in North Africa and the Middle East and have only one hump.
(vii) Bactrian camels have two humps and they exist only in China and Central Asia.
(viii) Camels store their extra fat in their humps.
(ix) The extra fat in their humps gives them the energy to walk extra miles until they find food.

Answer 2.
2.1
(i) One can use any of the three tools of persuasion according to the ancient Greek Philosopher Aristotle. They are ethos, pathos and logos.
(ii) The speaker can use pathos while speaking, to evoke emotions of fear and to convince the audience of his cause. His words are intended to create fear in the audience.
(iii) Use of data in logos can convince people to do or buy something as there are proofs in numbers. We might buy a soap that kills 100% bacteria based on an advertisement which claims that they have done the laboratory research.
(iv) Education gives credibility to any person who is educated and the people believe him based on the fact that he is knowledgeable and one can trust him.
(v) Ethos, pathos and logos all have their strengths, however, a speech can be effective when they are used together. Indeed, most speakers use a combination of ethos, pathos and logos to persuade their audiences.

2.2
(i) An audience will consider a speaker credible if he seems trustworthy, reliable and sincere.
Logos is the use of facts, information, statistics, or other evidences to make your argument more convincing.

2.3
(i) credible
(ii) convince
(iii) evidence

SECTION-B

Answer 3.
(a)
51,7th Cross Street,
OMBR Layout,
Bengaluru- 43
23rd June, 20xx
The Editor,
The Hindustan Times,
Brigade Gardens,
Church Street,
Bengaluru – 560001

Sub: About poor maintenance of the Public Park of our locality.

Respected Sir,

Through the columns of your esteemed newspaper, I would like to express my serious concern on the poor maintenance of the public park of our locality.

The public park of our area is in a pitiable condition. The gardeners are not regular so, the plants are not pruned regularly, as a result of which, the park gives an unpleasant appearance. The park has become a thoroughfare for stray animals as there is no gate at the entrance of the park. It has become a haven for the anti-social elements to gather in the park in the evening making it difficult for the women folk to have a walk and also for children to play in the evening. Our regular complaints to the local authorities have failed to bring any change in the situation.

Therefore, I would like to request the concerned higher authorities to improve the condition of the park for the convenience of the local residents. I shall be highly obliged to you for publishing my letter in your newspaper.

Thanking you,

Yours faithfully,
Rajesh Kumar

OR

(b)
Principal,
Vaidik Kanya Public School.
Haryana.
21st March, 20 xx
M/s. Jasmeet Traders & Co.
Furniture Manufacturers,
Haryana.

Sub: Order for school furniture

Sir,

On behalf of the Vaidik Kanya Public School, I am placing an order for the following items of school furniture:
Cbse sample papers english set 1 Ans.3(b)
I would be grateful if you supply the above articles at the earliest before the session starts. Please send the bill along with the furniture and we will dispatch a demand draft for the amount of the bill in your favour within a week after receiving the articles.

Thanking You,

Yours Faithfully,
Sidharth Sinha (Principal)

Answer 4.

Believe It or Not

No one would believe what happened that night when I went to the village festival. I was just ten years old. I had been to my grandparents’ house which is in a very small village. We used to go there every summer when we were young, until our grandparents came to live with us.

It was the night of the temple festival, when the whole village came to life in many colours and sounds. Music blared in every street, the streets were decorated with streamers and the front of every house was adorned with rangoli and it was a resplendent sight. In the evening, there was a cultural programme organized by the village heads. It was held in the open grounds outside the village.

I participated in a dance competition and was having such a good time that I did not see time going by quickly. I had made friends in the village and they planned to go out into the fields, after everything was over, for a walk. I went along with them and as we walked, I heard the tinkling of bells and saw a ghost-like figure. I was terrified and my heart palpitated and I soon realized that my friends were off the path and I was alone.

That was the last time I went with friends or anybody to the fields. Believe it or not but I am sure, I really saw a ghost that night.

OR
Stormy Night

Storms were certain that night but it was not the weather that caused the turmoil. It was getting stormy with the winds howling through the window. The weather was getting terrible by every minute. I heard the branches snap. Electricity was cut off and I could see through the windows that the power lines were cut and hanging dangerously on the poles and branches of the trees.

The storm was nothing at all when we realised that our father had got a wheezing attack which got severe because of the weather. My mother gave him the usual medication but that did not seem to help. We took turns to sit with him and rub his back to ease the pain but it did not seem to get better with time.

Usually, in such situations, we used to take him to the hospital and he would be given oxygen that would ease his condition. We were in turmoil because we could not take him out in such bad weather. Every moment was like being on pins and needles.

The long and disturbed wait for relief got over when the rains let up and a neighbour helped us in taking our father to the hospital. Though it was just for a night, it was unforgettable and turbulent. The sun shone through in morning and the storm had passed.

Answer 5.
(a) despite
(b) Although
(c) that
(d) As
(e)Unless

Answer 6.
Cbse sample papers english set 1 Ans.6

Answer 7.
(a) The storm rocked the ship violently.
(b) The artist painstakingly worked at his masterpiece.
(c) Dad was offered a free gift by the firm.
(d) I read in the paper that the burglar had been caught.
(e) The cricketers began their piercing calls at nightfall.

SECTION-C

Answer 8.
(a)
(i) The sailors are surrounded by the ice as far as their eyes can see.
(ii) Cracked, growled, roared and howled.
(iii) The sailors are experiencing severe storm that has driven them to icy seas which is dismal as they can see neither human nor a beast.
(iv) The synonym of the word ‘rumbled’ is roared.

OR

(b) (i) Caesar is ashamed that he listened to Calpumia’s dreams and wished to stay at home.
(ii) Caesar decides to go out to the Capitol against the wishes of Calpumia.
(iii) Caesar had been coaxed and convinced by Decius Brutus who said that the dream meant positive things for Caesar and not as Calpumia feared. Caesar decided to go based on this counsel.
(iv) The synonym of the word ’embarrassed’ is ashamed.

Answer 9.
(i) The author waited outside until the boys returned and did not say a word until they reached the city. He wanted the boys to feel that their secret was safe and he admired them for their nobility in their hearts.

(ii) Lavinia, who had already decided to leave her husband as he was supposedly having an affair with a lady, comes to see him before she leaves and finally meets Helen, who is just as a ghost should be, not so pretty, Lavinia just smiles knowing that there is no need for doubting John, leaves and reconciles with him.

(iii) Though none liked the frog singing, he continued to croak from morning till evening and no amount of stones, bricks or complaints could stop him from doing what he did. This shows that the frog was very determined to keep on singing, in spite of criticism.

(iv) Victoria portrays the innocence against the manipulative and scheming adults in the play, who wish that their grandfather was dead. They use to get their work done and want her to behave properly when they themselves are not doing the right thing. She is a loving girl and still has the innocence which is not seen in the grown-ups.

(v) Michael feels that Sebastian’s memory must have plunged into the computer when he banged his head in the accident. The computer must have immediately stored his memory upon immediate contact. A little later, he also realises that the memory must have got transferred when Michael and his father picked the game at the fair.

Answer 10.
(a)
The frog merily croaks which is disliked by all in the bog but that does not deter the frog from belting out in rain or shine, day or night. His determination is so extreme that neither sticks nor bricks, complaints or insults stopped his elated heart; until a nightingale came to the bog and every bird and animal was enraptured with her singing. The frog with his confidence takes the opportunity to deride the nightingale’s singing, makes money out of her talents and pushes the nightingale to extreme limits that it burst a vein and killed it. The frog was not concerned but blamed the nightingale for being stupid and influenced. The frog had the audacity to say that he can sing with panache and continue to out blare out loud in the bog.

OR

(b) The citizens of Rome clearly play an important role in the play ‘Julius Caesar’. The characters in the play are timed to express themselves and are very passionate. Throughout the play these emotions are communicated through various events.

An example of expression by the citizens occur during the funeral oration by Mark Antony. Brutus logially gives his reasons that required Caesar’s death. He informs them that he acted out of love of Rome and his desire to prevent tyrants from controlling it. The citizens embrace his words with cheers and understanding. However, their mood alters when Antony offers his interpretation of the situation. He passionately described the deeds Caesar performed on behalf of the citizens of Rome, which clearly contradicted the opinions of the conspirators that Caesar was too ambitious. This alteration in the minds of the crowd fells us about their ficklemindedness in Julius Caesar.

Answer 11.
(a)
(i) The first entries in the diary tell us about the lively existence of a young Jewish girl who has just turned thirteen. She seems to bubble with laughter and joy, playing Ping-Pong, participating in pranks and flirting with young men. Although she seems popular with her school friends and is doted upon by her parents, Anne feels loneliness. Not having a best friend with whom she can share her emotions, she decides to write her thoughts and feeling into her diary, which she names “Kitty.”

Anne is particularly close to her father, Otto Frank. His father’s birthday gift to her, the red- checkered diary, is her favourite. He also trusts her enough to tell her about his plans to take the family into hiding. Anne is also close to her sister, Margot, even though she seems a bit jealous of her. She states that Margot is the smart one in the family while she struggles to do well in school to keep up with Margot.

In spite of her youth and happiness, Anne cannot disregard what is going on around her. She had to quit her Dutch school and attend a Jewish one. Additionally, she gives a long list of other restrictions that were put on the Jews. They cannot ride trains, own bicycles, work in most businesses, go for movies or visit Church. Anne finds the restrictions difficult, but she says that life is bearable. It is obvious that this optimistic and positive young lady tries to make the best of any situation.

OR

(ii) Anne Frank’s perpetual feeling of being lonely and misunderstood provides the impetus for her dedicated diary writing and colours many of the experiences she recounts. Even in her early diary entries, she writes about her friends and her lively social life. Anne expresses gratitude that the diary can act as a confidant with whom she can share her innermost thoughts. This might seem an odd sentiment from such a playful, amusing and social young girl but Anne explains that she is never comfortable discussing her inner emotions, even around close friends. Notwithstanding her excitement over developing into a woman and despite the specter of war surrounding her, Anne nonetheless finds that she and her friends talk only about trivial topics.

We learn later in the diary that neither Mrs. Frank nor Margot offers much emotional support to Anne. Though Anne feels very connected to her father and derives strength and encouragement from him, he is not a fitting confidant for a thirteen-year-old girl. Near the end of her diary, Anne shares a quotation she once read with which she strongly agrees : “Deep down, the young are lonelier than the old.” Because young people are less able than adults to define or express their needs clearly, they are more likely to feel lonely, isolated and misunderstood.

Feelings of loneliness and isolation also play out in the larger scheme of the annex. All the inhabitants feel anxious, fearful, and stressed because of their circumstances, yet no one wants to burden the others with such depressing feelings. As an outcome, the residents become impatient with one another over trivial matters and never address their deeper fears or worries. This continual masking and repression of serious emotions creates isolation and misunderstanding between all the residents of the annex.

(b) (i) The winter of 1892, was a troubling time for Helen. During an autumn at Fern Quarry she wrote a story called “The Frost King,” seemingly inspired by the fall foliage around her and sent it to Mr. Anagnos at the Perkins Institute as a gift. Mr. Anagnos loved it and was very impressed, so he published the story in one of the Institute’s reports. However, it was soon discovered that a very similar story called “The Frost Fairies” existed in a book that was published long before Helen wrote her story. Helen could not remember hearing such a story but Mr. Anagnos came to think he had been deceived and that Helen and Miss Sullivan had deliberately taken the words from “The Frost Fairies.”

Helen was investigated by a court comprised of the teachers and officers of the Perkins Institute and it took a toll on her morale, as she felt horrible that such a thing had happened. Miss Sullivan had never heard of “The Frost Fairies,” either. Eventually, it comes out that Mrs. Sophia C. Hopkins had read books to Helen during the summer she spent at Brewster while Miss Sullivan was away on vacation and “The Frost Fairies” must have been one of those. The strange words had remained in Helen’s mind, though she did not realise it. Helen was forgiven but the experience left her petrified to write for a long time. Even when writing a letter she felt that the words were not her own.

OR

(ii) As Helen grew older, so did her frustration of not being able to properly express herself. She had many terrible fits of anger that deeply troubled her parents. When she was six, her t parents took her to an occultist, Dr. Chisolm, in Baltimore to see if he could help her but it went in vain. Instead, the doctor advised to find Helen a teacher so that she could be educated. He suggested them to consult Dr. Alexander Graham Bell in Washington for recommendations. Finally, after writing to Dr. Anagnos at the Perkins Institution in Boston, they received confirmation that a teacher for Helen had been found.

Alexander Graham Bell helped Helen by suggesting her father the school that might be able f to provide Helen with a teacher. Helen dedicated ‘The Story of My Life’ to Bell because of his work with the deaf and also because he was the first to start her journey towards communicating and learning.
He had wonderful stories of his inventions and experiments to tell her and every subject he
touched, kept her fascinated. He made her feel confidant about herself and also dream that she could be an inventor one day. He was humorous and poetic and his love for children , was above all else. Helen Keller’s steps toward greater things, learning and experiences
were guided by Dr. Bell.

We hope the CBSE Sample Papers for Class 10 English Communicative Set 1 help you. If you have any query regarding CBSE Sample Papers for Class 10 English Communicative Set 1, drop a comment below and we will get back to you at the earliest.

CBSE Sample Papers for Class 10 English Communicative Set 1 Read More ┬╗

CBSE Sample Papers for Class 10 Hindi A Set 3

CBSE Sample Papers for Class 10 Hindi A Set 3

CBSE Sample Papers for Class 10 Hindi A Set 3

These Sample Papers are part of CBSE Sample Papers for Class 10 Hindi A. Here we have given CBSE Sample Papers for Class 10 Hindi A Set 3

рдирд┐рд░реНрдзрд╛рд░рд┐рдд рд╕рдордп : 3 рдШрдгреНрдЯреЗ
рдЕрдзрд┐рдХрддрдо рдЕрдВрдХ : 80

рд╕рд╛рдорд╛рдиреНрдп рдирд┐рд░реНрджреЗрд╢

* рдЗрд╕ рдкреНрд░рд╢реНрди-рдкрддреНрд░ рдореЗрдВ рдЪрд╛рд░ рдЦрдгреНрдб рд╣реИрдВ
рдЦрдгреНрдб (рдХ) : рдЕрдкрдард┐рдд рдЕрдВрд╢ -15 рдЕрдВрдХ
рдЦрдгреНрдб (рдЦ) : рд╡реНрдпрд╛рд╡рд╣рд╛рд░рд┐рдХ рд╡реНрдпрд╛рдХрд░рдг -15 рдЕрдВрдХ
рдЦрдгреНрдб (рдЧ) : рдкрд╛рдареНрдп рдкреБрд╕реНрддрдХ рдПрд╡рдВ рдкреВрд░рдХ рдкрд╛рдареНрдп рдкреБрд╕реНрддрдХ -30 рдЕрдВрдХ
рдЦрдгреНрдб (рдШ) : рд▓реЗрдЦрди -20 рдЕрдВрдХ
* рдЪрд╛рд░реЛрдВ рдЦрдгреНрдбреЛрдВ рдХреЗ рдкреНрд░рд╢реНрдиреЛрдВ рдХреЗ рдЙрддреНрддрд░ рджреЗрдирд╛ рдЕрдирд┐рд╡рд╛рд░реНрдп рд╣реИред
* рдпрдерд╛рд╕рдВрднрд╡ рдкреНрд░рддреНрдпреЗрдХ рдЦрдгреНрдб рдХреЗ рдкреНрд░рд╢реНрдиреЛрдВ рдХреЗ рдЙрддреНрддрд░ рдХреНрд░рдорд╢: рджреАрдЬрд┐рдПред

рдЦрдгреНрдб (рдХ) : рдЕрдкрдард┐рдд рдЕрдВрд╢

рдкреНрд░.1. рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдЧрджреНрдпрд╛рдВрд╢ рдХреЛ рдзреНрдпрд╛рдирдкреВрд░реНрд╡рдХ рдкрдврд╝рд┐рдП рдФрд░ рдиреАрдЪреЗ рд▓рд┐рдЦреЗ рдкреНрд░рд╢реНрдиреЛрдВ рдХреЗ рдЙрддреНрддрд░ рд▓рд┐рдЦрд┐рдП-
рд╕рд╛рдорд╛рдЬрд┐рдХ рд╕рдорд╛рдирддрд╛ рдХрд╛ рдЕрднрд┐рдкреНрд░рд╛рдп рд╣реИ рдХрд┐ рд╕рд╛рдорд╛рдЬрд┐рдХ рдХреНрд╖реЗрддреНрд░ рдореЗрдВ рдЬрд╛рддрд┐, рдзрд░реНрдо, рд╡реНрдпрд╡рд╕рд╛рдп, рд░рдВрдЧ рдЖрджрд┐ рдХреЗ рдЖрдзрд╛рд░ рдкрд░ рдХрд┐рд╕реА рдкреНрд░рдХрд╛рд░ рдХрд╛ рднреЗрджрднрд╛рд╡ рди рд╣реЛред рд╕рдмрдХреЛ рдПрдХ рд╕рдорд╛рди рд╕рдордЭрд╛ рдЬрд╛рдП рдФрд░ рд╕рдмрдХреЛ рд╕рдорд╛рди рд╕реБрд╡рд┐рдзрд╛рдПрдБ рджреА рдЬрд╛рдПрдБред рд╣рдорд╛рд░реЗ рджреЗрд╢ рдореЗрдВ рд╕рд╛рдорд╛рдЬрд┐рдХ рд╕рдорд╛рдирддрд╛ рдХрд╛ рдЕрднрд╛рд╡ рд╣реИред рдЬрд╛рддрд┐-рдкреНрд░рдерд╛ рдХреЗ рдХрд╛рд░рдг рдХрд░реЛрдбрд╝реЛрдВ рд▓реЛрдЧ рд╕рдорд╛рдЬ рдореЗрдВ рдЕрдЫреВрдд рдХреЗ рд░реВрдк рдореЗрдВ рд░рд╣рддреЗ рд╣реИрдВред рдЙрдиреНрд╣реЗрдВ рд╕рдорд╛рдЬ рд╕реЗ рдмрд╣рд┐рд╖реНрдХреГрдд рд╕рдордЭрд╛ рдЬрд╛рддрд╛ рд╣реИ рдФрд░ рд╕рд╛рдорд╛рдЬрд┐рдХ рдЕрдзрд┐рдХрд╛рд░реЛрдВ рд╕реЗ рд╡рдВрдЪрд┐рдд рдХрд░ рджрд┐рдпрд╛ рдЬрд╛рддрд╛ рд╣реИред рд╣рдорд╛рд░реЗ рд╕рдорд╛рдЬ рдореЗрдВ рд▓рдбрд╝рдХрд┐рдпреЛрдВ рдХреЗ рд╕рд╛рде рднреА рднреЗрджрднрд╛рд╡ рдХрд┐рдпрд╛ рдЬрд╛рддрд╛ рд╣реИред рдорд╛рддрд╛-рдкрд┐рддрд╛ рднреА рдЙрдиреНрд╣реЗрдВ рд╡реЗ рд╕реБрд╡рд┐рдзрд╛рдПрдБ рдирд╣реАрдВ рджреЗрддреЗ рдЬреЛ рд╡реЗ рдЕрдкрдиреЗ рд▓рдбрд╝рдХреЛрдВ рдХреЛ рджреЗрддреЗ рд╣реИрдВред рдЗрд╕ рдкреНрд░рдХрд╛рд░ рдХреА рдЕрд╕рдорд╛рдирддрд╛ рдХреЗ рдХрд╛рд░рдг рдмрд╣реБрдд-рд╕реА рд▓рдбрд╝рдХрд┐рдпреЛрдВ рдХрд╛ рд╢рд╛рд░реАрд░рд┐рдХ рдФрд░ рдорд╛рдирд╕рд┐рдХ рд╡рд┐рдХрд╛рд╕ рдирд╣реАрдВ рд╣реЛ рдкрд╛рддрд╛ рд╣реИред рдЗрд╕рд╕реЗ рд╕рдорд╛рдЬ рдХреА рдЙрдиреНрдирддрд┐ рдореЗрдВ рдмрд╛рдзрд╛ рдкрдбрд╝рддреА рд╣реИред рдЗрд╕ рдкреНрд░рдХрд╛рд░ рдХреА рдЕрд╕рдорд╛рдирддрд╛ рдХрд╛ рджреВрд░ рд╣реЛрдирд╛ рдЕрддреНрдпрдзрд┐рдХ рдЖрд╡рд╢реНрдпрдХ рд╣реИред рдирд╛рдЧрд░рд┐рдХ рд╕рдорддрд╛ рдХрд╛ рдЕрд░реНрде рд╣реИ рдХрд┐ рд░рд╛рдЬреНрдп рдореЗрдВ рдирд╛рдЧрд░рд┐рдХреЛрдВ рдХреЛ рд╕рдорд╛рди рдЕрдзрд┐рдХрд╛рд░ рдкреНрд░рд╛рдкреНрдд рд╣реЛрдВ ред рдХрд╛рдиреВрди рдФрд░ рдиреНрдпрд╛рдпрд╛рд▓рдпреЛрдВ рдореЗрдВ рдЧрд░реАрдм-рдЕрдореАрд░ рдФрд░ рдКрдБрдЪ-рдиреАрдЪ рдХрд╛ рдХреЛрдИ рднреЗрдж рди рдХрд┐рдпрд╛ рдЬрд╛рдПред рджрдВрдб рд╕реЗ рдХреЛрдИ рдЕрдкрд░рд╛рдзреА рдмреЗрдЪ рди рд╕рдХреЗред рдЙрд╕реА рдкреНрд░рдХрд╛рд░ рд░рд╛рдЬреНрдп рдХреЗ рдкреНрд░рддреНрдпреЗрдХ рдирд╛рдЧрд░рд┐рдХ рдХреЛ рд░рд╛рдЬреНрдп-рдХрд╛рд░реНрдп рдореЗрдВ рд╕рдорд╛рди рд░реВрдк рд╕реЗ рднрд╛рдЧ рд▓реЗрдиреЗ рдХрд╛, рдордд рджреЗрдиреЗ рдХрд╛, рд╕рд░рдХрд╛рд░реА рдиреМрдХрд░реА рдкреНрд░рд╛рдкреНрдд рдХрд░рдиреЗ рдХреЛ рддрдерд╛ рд░рд╛рдЬреНрдп рдХреЗ рдКрдБрдЪреЗ-рд╕реЗ-рдКрдБрдЪреЗ рдкрдж рдХреЛ рдЕрдкрдиреА рдпреЛрдЧреНрдпрддрд╛ рдХреЗ рдмрд▓ рдкрд░ рдкреНрд░рд╛рдкреНрдд рдХрд░рдиреЗ рдХрд╛ рдЕрдзрд┐рдХрд╛рд░ рд░рд╛рдЬрдиреАрддрд┐рдХ рд╕рдорд╛рдирддрд╛ рдХрд╛ рджреНрдпреЛрддрдХ рд╣реИред
(i) рд╕рд╛рдорд╛рдЬрд┐рдХ рд╕рдорд╛рдирддрд╛ рд╕реЗ рдХреНрдпрд╛ рдЕрднрд┐рдкреНрд░рд╛рдп рд╣реИ?
(ii) рд╣рдорд╛рд░реЗ рджреЗрд╢ рдореЗрдВ рд╕рд╛рдорд╛рдЬрд┐рдХ рдЕрд╕рдорд╛рдирддрд╛ рдХрд┐рди рд░реВрдкреЛрдВ рдореЗрдВ рджрд┐рдЦрд╛рдИ рджреЗрддреА рд╣реИ?
(ii) рдирд╛рдЧрд░рд┐рдХ рд╕рдорд╛рдирддрд╛ рд╕реЗ рдХреНрдпрд╛ рдЕрднрд┐рдкреНрд░рд╛рдп рд╣реИ?
(iv) рд▓рдбрд╝рдХрд┐рдпреЛрдВ рдХрд╛ рд╢рд╛рд░реАрд░рд┐рдХ рдФрд░ рдорд╛рдирд╕рд┐рдХ рд╡рд┐рдХрд╛рд╕ рд╕реБрдЪрд╛рд░реБ рд░реВрдк рд╕реЗ рдХреНрдпреЛрдВ рдирд╣реАрдВ рд╣реЛ рдкрд╛рддрд╛ рд╣реИ?
(v) рдЗрд╕ рдЧрджреНрдпрд╛рдВрд╢ рдХрд╛ рдЙрдкрдпреБрдХреНрдд рд╢реАрд░реНрд╖рдХ рджреАрдЬрд┐рдПред

рдкреНрд░. 2. рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдХрд╛рд╡реНрдпрд╛рдВрд╢ рдХреЛ рдзреНрдпрд╛рдирдкреВрд░реНрд╡рдХ рдкрдврд╝рдХрд░ рдкреВрдЫреЗ рдЧрдпреЗ рдкреНрд░рд╢реНрдиреЛрдВ рдХреЗ рдЙрддреНрддрд░ рд▓рд┐рдЦрд┐рдП
рд▓рд╣рд░реЛрдВ рд╕реЗ рдбрд░рдХрд░ рдиреМрдХрд╛ рдкрд╛рд░ рдирд╣реАрдВ рд╣реЛрддреА,
рдХреЛрд╢рд┐рд╢ рдХрд░рдиреЗ рд╡рд╛рд▓реЛрдВ рдХреА рдХрднреА рд╣рд╛рд░ рдирд╣реАрдВ рд╣реЛрддреАред
рдирдиреНрд╣реАрдВ рдЪреАрдВрдЯреА рдЬрдм рджрд╛рдирд╛ рд▓реЗрдХрд░ рдЪрд▓рддреА рд╣реИ,
рдЪрдврд╝рддреА рджреАрд╡рд╛рд░реЛрдВ рдкрд░ рд╕реМ рдмрд╛рд░ рдлрд┐рд╕рд▓рддреА рд╣реИред
рдорди рдХрд╛ рд╡рд┐рд╢реНрд╡рд╛рд╕ рд░рдЧреЛрдВ рдореЗрдВ рд╕рд╛рд╣рд╕ рднрд░рддрд╛ рд╣реИ,
рдЪрдврд╝рдХрд░ рдЧрд┐рд░рдирд╛, рдЧрд┐рд░рдХрд░ рдЪрдврд╝рдирд╛, рдирд╛ рдЕрдЦрд░рддрд╛ рд╣реИред
рдЖрдЦрд┐рд░ рдЙрд╕рдХреА рдореЗрд╣рдирдд рдмреЗрдХрд╛рд░ рдирд╣реАрдВ рд╣реЛрддреА,
рдХреЛрд╢рд┐рд╢ рдХрд░рдиреЗ рд╡рд╛рд▓реЛрдВ рдХреА рдХрднреА рд╣рд╛рд░ рдирд╣реАрдВ рд╣реЛрддреАред
рдбреБрдмрдХрд┐рдпрд╛рдБ рд╕рд┐рдВрдзреБ рдореЗрдВ рдЧреЛрддрд╛рдЦреЛрд░ рд▓рдЧрд╛рддрд╛ рд╣реИ,
рдЬрд╛-рдЬрд╛ рдХрд░ рдЦрд╛рд▓реА рд╣рд╛рде рд▓реМрдЯрдХрд░ рдЖрддрд╛ рд╣реИред
рдорд┐рд▓рддреЗ рдирд╣реАрдВ рд╕рд╣рдЬ рд╣реА рдореЛрддреА рдЧрд╣рд░реЗ рдкрд╛рдиреА рдореЗрдВ,
рдмрдврд╝рддрд╛ рджреБрдЧреБрдирд╛ рдЙрддреНрд╕рд╛рд╣ рдЗрд╕реА рд╣реИрд░рд╛рдиреА рдореЗрдВ,
рдореБрдЯреНрдареА рдЙрд╕рдХреА рдЦрд╛рд▓реА рд╣рд░ рдмрд╛рд░ рдирд╣реАрдВ рд╣реЛрддреА,
рдХреЛрд╢рд┐рд╢ рдХрд░рдиреЗ рд╡рд╛рд▓реЛрдВ рдХреА рдХрднреА рд╣рд╛рд░ рдирд╣реАрдВ рд╣реЛрддреАред
рдЕрд╕рдлрд▓рддрд╛ рдПрдХ рдЪреБрдиреМрддреА рд╣реИ, рдЗрд╕реЗ рд╕реНрд╡реАрдХрд╛рд░ рдХрд░реЛ,
рдХреНрдпрд╛ рдХрдореА рд░рд╣ рдЧрдИ, рджреЗрдЦреЛ рдФрд░ рд╕реБрдзрд╛рд░ рдХрд░реЛред
рдЬрдм рддрдХ рди рд╕рдлрд▓ рд╣реЛ, рдиреАрдВрдж-рдЪреИрди рдХреЛ рддреНрдпрд╛рдЧреЛ рддреБрдо,
рд╕рдВрдШрд░реНрд╖ рдХрд╛ рдореИрджрд╛рди рдЫреЛрдбрд╝ рдХрд░ рдордд рднрд╛рдЧреЛ рддреБрдоред
рдХреБрдЫ рдХрд┐рдпреЗ рдмрд┐рдирд╛ рд╣реА рдЬрдп-рдЬрдпрдХрд╛рд░ рдирд╣реАрдВ рд╣реЛрддреА,
рдХреЛрд╢рд┐рд╢ рдХрд░рдиреЗ рд╡рд╛рд▓реЛрдВ рдХреА рдХрднреА рд╣рд╛рд░ рдирд╣реАрдВ рд╣реЛрддреАред
(i) рдЕрд╕рдлрд▓рддрд╛ рдПрдХ рдЪреБрдиреМрддреА рд╣реИ рд╕реНрд╡реАрдХрд╛рд░ рдХрд░реЛред’-рдкрдВрдХреНрддрд┐ рджреНрд╡рд╛рд░рд╛ рдХрд╡рд┐ рдХреНрдпрд╛ рдХрд╣рдирд╛ рдЪрд╛рд╣рддрд╛ рд╣реИ?
(ii) тАШрдорд┐рд▓рддреЗ рдирд╣реАрдВ рд╕рд╣рдЬ рд╣реА рдореЛрддреА рдЧрд╣рд░реЗ рдкрд╛рдиреА рдореЗрдВред’ рдЗрд╕ рдкрдВрдХреНрддрд┐ рдХреЗ рдЖрдзрд╛рд░ рдкрд░ рдмрддрд╛рдЗрдП рдХрд┐ рдореЛрддреА рдХреМрди рдФрд░ рдХрдм рдкреНрд░рд╛рдкреНрдд рдХрд░ рдкрд╛рддрд╛ рд╣реИ?
(iii) рдЪреАрдВрдЯреА рд╕реЗ рдкреНрд░реЗрд░рдгрд╛ рд▓реЗрдХрд░ рд╣рдореЗрдВ рдХреНрдпрд╛ рд▓рд╛рдн рдкреНрд░рд╛рдкреНрдд рд╣реЛрдЧрд╛?
(iv) рдХрд╡рд┐рддрд╛ рдореЗрдВ рдХрд╡рд┐ рдХреНрдпрд╛ рдкреНрд░реЗрд░рдгрд╛ рджреЗ рд░рд╣рд╛ рд╣реИ?
(v) рдирдиреНрд╣реАрдВ рдЪреАрдВрдЯреА рдХреЗ рдЙрджрд╛рд╣рд░рдг рджреНрд╡рд╛рд░рд╛ рдХрд╡рд┐ рдиреЗ рдХреИрд╕реЗ рд▓реЛрдЧреЛрдВ рдХреЛ рдкреНрд░реЗрд░рдгрд╛ рджреА рд╣реИ?

рдЦрдгреНрдб (рдЦ) : рд╡реНрдпрд╛рд╡рд╣рд╛рд░рд┐рдХ рд╡реНрдпрд╛рдХрд░рдг

рдкреНрд░. 3. рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдкреНрд░рд╢реНрдиреЛрдВ рдХреЗ рдирд┐рд░реНрджреЗрд╢рд╛рдиреБрд╕рд╛рд░ рдЙрддреНрддрд░ рджреАрдЬрд┐рдП
(рдХ) рддреБрдо рдШрд░ рдЧрдП рдФрд░ рд╡рд╣ рд░реЛрдиреЗ рд▓рдЧреАред (рд╕рд░рд▓ рд╡рд╛рдХреНрдп рдореЗрдВ рдкрд░рд┐рд╡рд░реНрддрд┐рдд рдХреАрдЬрд┐рдП)
(рдЦ) рд╡реЗ рдмреЛрд▓рддреЗ рдЬрд╛ рд░рд╣реЗ рдереЗ рдФрд░ рдкрд┐рддрд╛рдЬреА рдХрд╛ рдЪреЗрд╣рд░рд╛ рдЧрд░реНрд╡ рдореЗрдВ рдмрджрд▓рддрд╛ рдЬрд╛ рд░рд╣рд╛ рдерд╛ред (рд░рдЪрдирд╛ рдХреЗ рдЖрдзрд╛рд░ рдкрд░ рд╡рд╛рдХреНрдп рднреЗрдж рдмрддрд╛рдЗрдП)
(рдЧ) рдШрдВрдЯреА рдмрдЬреА, рдЫрд╛рддреНрд░ рдкреБрд╕реНрддрдХреЗрдВ рд▓реЗрдХрд░ рдХрдХреНрд╖рд╛ рд╕реЗ рдмрд╛рд╣рд░ рдирд┐рдХрд▓реЗред рдЫрд╛рддреНрд░ рдШрд░ рдЪрд▓реЗ рдЧрдПред (рд╕рдВрдпреБрдХреНрдд рд╡рд╛рдХреНрдп рдореЗрдВ рдкрд░рд┐рд╡рд░реНрддрд┐рдд рдХреАрдЬрд┐рдП)

рдкреНрд░. 4. рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдкреНрд░рд╢реНрдиреЛрдВ рдХреЗ рдирд┐рд░реНрджреЗрд╢рд╛рдиреБрд╕рд╛рд░ рдЙрддреНрддрд░ рджреАрдЬрд┐рдП
(рдХ) рдЙрд╕рдХреЗ рджреНрд╡рд╛рд░рд╛ рдЙрдЫрд▓рдХрд░ рдкрддрдВрдЧ рдкрдХрдбрд╝ рд▓реА рдЧрдИред (рд╕рд░рд▓ рд╡рд╛рдХреНрдп рдореЗрдВ рдкрд░рд┐рд╡рд░реНрддрд┐рдд рдХреАрдЬрд┐рдП)
(рдЦ) рд╕реНрддреНрд░рд┐рдпреЛрдВ рдХреЛ рдкрдврд╝рд╛рдиреЗ рд╕реЗ рдЕрдирд░реНрде рд╣реЛрддреЗ рд╣реИрдВред (рд╡рд╛рдЪреНрдп рдХрд╛ рдкреНрд░рдХрд╛рд░ рдмрддрд╛рдЗрдП)
(рдЧ) рджрд┐рд▓реАрдк рджреМрдбрд╝рд╛ред (рднрд╛рд╡рд╡рд╛рдЪреНрдп рдореЗрдВ рдкрд░рд┐рд╡рд░реНрддрд┐рдд рдХреАрдЬрд┐рдП)
(рдШ) рдХрд╡рдпрд┐рддреНрд░реА рдХрд╡рд┐рддрд╛ рдкрдврд╝рддреА рд╣реИред (рдХрд░реНрдорд╡рд╛рдЪреНрдп рдореЗрдВ рдкрд░рд┐рд╡рд░реНрддрд┐рдд рдХреАрдЬрд┐рдП)

рдкреНрд░. 5. рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рд╡рд╛рдХреНрдпреЛрдВ рд░реЗрдЦрд╛рдВрдХрд┐рдд рдкрджреЛрдВ рдХрд╛ рдкрдж рдкрд░рд┐рдЪрдп рд▓рд┐рдЦрд┐рдП
(рдХ) рдореИрдВ рдЕрдкрдиреА рдорд╛рддреГрднреВрдорд┐ рдкрд░ рдорд░ рдорд┐рдЯреЕрдЧреАред
(рдЦ) рдЬрд▓реНрджреА рднрд╛рдЧреЛ, рд╢реЗрд░ рдЖрдиреЗ рд╡рд╛рд▓рд╛ рд╣реИред
(рдЧ) рдЕрдм рд╣рдо рдХреНрдпрд╛ рдХрд░реЗрдВ, рдорд░рддреЗ рджрдо рддрдХ рди рдпрд╣ рд╢рд╣рдирд╛рдИ рдЫреВрдЯреЗрдЧреА рди рдХрд╛рд╢реАред
(рдШ) рдорд╛рдБ рдиреЗ рдиреМрдХрд░ рд╕реЗ рд╕рдмреНрдЬреА рдордБрдЧрд╛рдИред

рдкреНрд░. 6. рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдкреНрд░рд╢реНрдиреЛрдВ рдХреЗ рдЙрддреНрддрд░ рдирд┐рд░реНрджреЗрд╢рд╛рдиреБрд╕рд╛рд░ рд▓рд┐рдЦрд┐рдП
(рдХ) тАЬрдиреЗрдХ рд╡рд┐рд▓реЛрдХрд┐ рдзреМрдВ рд░рдШреБрдмрд░рдирд┐ ред
рдмрд╛рд▓-рднреВрд╖рди рдмрд╕рди, рддрди рд╕реБрдВрджрд░ рд░реБрдЪрд┐рд░ рд░рдЬ рднрд░рдирд┐ред
рдкрд░рд╕реНрдкрд░ рдЦреЗрд▓рдирд┐ рдЕрдЬрд┐рд░ рдЙрдард┐ рдЪрд▓рдирд┐ рдЧрд┐рд░рд┐ рдкрд░рдирд┐ ред’
-рдЙрдкрд░реНрдпреБрдХреНрдд рдХрд╛рд╡реНрдп-рдкрдВрдХреНрддрд┐рдпреЛрдВ рдореЗрдВ рдХреМрди-рд╕рд╛ рд░рд╕ рдирд┐рд╣рд┐рдд рд╣реИ?
(рдЦ) ‘рдЕрдиреБрд░рд╛рдЧ/рдИрд╢реНрд╡рд░ рд╡рд┐рд╖рдпрдХ рд░рддрд┐’ рд╕реНрдерд╛рдпреА рднрд╛рд╡ рдХрд┐рд╕ рд░рд╕ рдХрд╛ рд╣реИ?
(рдЧ) рдирд┐рдореНрди рдХрд╛рд╡реНрдп-рдкрдВрдХреНрддрд┐рдпреЛрдВ рдореЗрдВ рдХреМрди-рд╕рд╛ рд╕реНрдерд╛рдпреА рднрд╛рд╡ рд╣реИ?
тАЬрдХрд╣реБрдБ рд╕реБрд▓рдЧрдд рдХреЛрдЙ рдЪрд┐рддрд╛ рдХрд╣реБрдБ рдХреЛрдЙ рдЬрд╛рддрд┐ рдмреБрдЭрд╛рдИ ред
рдПрдХ рд▓рдЧрд╛рдИ рдЬрд╛рддрд┐, рдПрдХ рдХреА рд░рд╛рдЦ рдмрд╣рд╛рдИредред”
(рдШ) рд░рд╕ рдирд┐рд╖реНрдкрддреНрддрд┐ рдореЗрдВ рд╕рд╣рд╛рдпрдХ рдЕрд╡рдпрд╡реЛрдВ рдХреЗ рдирд╛рдо рдмрддрд╛рдЗрдПред

рдЦрдгреНрдб (рдЧ) : рдкрд╛рдареНрдп рдкреБрд╕реНрддрдХ рдПрд╡рдВ рдкреВрд░рдХ рдкрд╛рдареНрдп рдкреБрд╕реНрддрдХ

рдкреНрд░. 7. рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдЧрджреНрдпрд╛рдВрд╢ рдХреЛ рдзреНрдпрд╛рдирдкреВрд░реНрд╡рдХ рдкрдврд╝рдХрд░ рдиреАрдЪреЗ рджрд┐рдП рдЧрдП рдкреНрд░рд╢реНрдиреЛрдВ рдХреЗ рдЙрддреНрддрд░ рд▓рд┐рдЦрд┐рдП
рдлрд╛рджрд░ рдХреЛ рдпрд╛рдж рдХрд░рдирд╛ рдПрдХ рдЙрджрд╛рд╕ рд╢рд╛рдВрдд рд╕рдВрдЧреАрдд рдХреЛ рд╕реБрдирдиреЗ рдЬреИрд╕рд╛ рд╣реИред рдЙрдирдХреЛ рджреЗрдЦрдирд╛ рдХрд░реБрдгрд╛ рдХреЗ рдирд┐рд░реНрдорд▓ рдЬрд▓ рдореЗрдВ рд╕реНрдирд╛рди рдХрд░рдиреЗ рдЬреИрд╕рд╛ рдерд╛ рдФрд░ рдЙрдирд╕реЗ рдмрд╛рдд рдХрд░рдирд╛ рдХрд░реНрдо рдХреЗ рд╕рдВрдХрд▓реНрдк рд╕реЗ рднрд░рдирд╛ рдерд╛ред рдореБрдЭреЗ ‘рдкрд░рд┐рдорд▓’ рдХреЗ рд╡реЗ рджрд┐рди рдпрд╛рдж рдЖрддреЗ рд╣реИрдВ рдЬрдм рд╣рдо рд╕рдм рдПрдХ рдкрд╛рд░рд┐рд╡рд╛рд░рд┐рдХ рд░рд┐рд╢реНрддреЗ рдореЗрдВ рдмрдБрдзреЗ рдЬреИрд╕реЗ рдереЗ рдЬрд┐рд╕рдХреЗ рдмрдбрд╝реЗ рдлрд╛рджрд░ рдмреБрд▓реНрдХреЗ рдереЗред рд╣рдорд╛рд░реЗ рд╣рдБрд╕реА-рдордЬрд╛рдХ рдореЗрдВ рд╡рд╣ рдирд┐рд░реНрд▓рд┐рдкреНрдд рд╢рд╛рдорд┐рд▓ рд░рд╣рддреЗ, рд╣рдорд╛рд░реА рдЧреЛрд╖реНрдард┐рдпреЛрдВ рдореЗрдВ рд╡рд╣ рдЧрдВрднреАрд░ рдмрд╣рд╕ рдХрд░рддреЗ, рд╣рдорд╛рд░реА рд░рдЪрдирд╛рдУрдВ рдкрд░ рдмреЗрдмрд╛рдХ рд░рд╛рдп рдФрд░ рд╕реБрдЭрд╛рд╡ рджреЗрддреЗ рдФрд░ рд╣рдорд╛рд░реЗ рдШрд░реЛрдВ рдХреЗ рдХрд┐рд╕реА рднреА рдЙрддреНрд╕рд╡ рдФрд░ рд╕рдВрд╕реНрдХрд╛рд░ рдореЗрдВ рд╡рд╣ рдмрдбрд╝реЗ рднрд╛рдИ рдФрд░ рдкреБрд░реЛрд╣рд┐рдд рдЬреИрд╕реЗ рдЦрдбрд╝реЗ рд╣реЛ рд╣рдореЗрдВ рдЕрдкрдиреЗ рдЖрд╢реАрд╖реЛрдВ рд╕реЗ рднрд░ рджреЗрддреЗред рдореБрдЭреЗ рдЕрдкрдирд╛ рдмрдЪреНрдЪрд╛ рдФрд░ рдлрд╛рджрд░ рдХрд╛ рдЙрд╕рдХреЗ рдореБрдЦ рдореЗрдВ рдкрд╣рд▓реА рдмрд╛рд░ рдЕрдиреНрди рдбрд╛рд▓рдирд╛ рдпрд╛рдж рдЖрддрд╛ рд╣реИ рдФрд░ рдиреАрд▓реА рдЖрдБрдЦреЛрдВ рдХреА рдЪрдордХ рдореЗрдВ рддреИрд░рддрд╛ рд╡рд╛рддреНрд╕рд▓реНрдп рднреА-рдЬреИрд╕реЗ рдХрд┐рд╕реА рдКрдБрдЪрд╛рдИ рдкрд░ рджреЗрд╡рджрд╛рд░реБ рдХреА рдЫрд╛рдпрд╛ рдореЗрдВ рдЦрдбрд╝реЗ рд╣реЛрдВред
(рдХ) рдХрд░реБрдгрд╛ рдХреЗ рдирд┐рд░реНрдорд▓ рдЬрд▓ рдореЗрдВ рд╕реНрдирд╛рди рдХрд░рдирд╛’ рдХрд╛ рдЖрд╢рдп рдХреНрдпрд╛ рд╣реИ?
(рдЦ) рдлрд╛рджрд░ рдмреБрд▓реНрдХреЗ рд╕рдВрдХрд▓реНрдк рд╕реЗ рд╕рдВрдиреНрдпрд╛рд╕реА рдереЗ, рдорди рд╕реЗ рд╕рдВрдиреНрдпрд╛рд╕реА рдирд╣реАрдВ рдереЗред рдХреИрд╕реЗ?
(рдЧ) рдлрд╝рд╛рджрд░ рдмреБрд▓реНрдХреЗ рдХреЗ рд╡реНрдпрдХреНрддрд┐рддреНрд╡ рдХреА рд╡рд┐рд╢реЗрд╖рддрд╛рдПрдБ рдмрддрд╛рдЗрдПред

рдкреНрд░. 8. рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдкреНрд░рд╢реНрдиреЛрдВ рдХреЗ рдЙрддреНрддрд░ рд╕рдВрдХреНрд╖реЗрдк рдореЗрдВ рд▓рд┐рдЦрд┐рдП
(рдХ) рдмрд╛рд▓рдЧреЛрдмрд┐рди рднрдЧрдд рдХреА рдХрд┐рди рд╡рд┐рд╢реЗрд╖рддрд╛рдУрдВ рдХреЗ рдХрд╛рд░рдг рдЙрдиреНрд╣реЗрдВ рд╕рд╛рдзреБ рдХрд╣рд╛ рдЬрд╛рддрд╛ рдерд╛? рдЕрдкрдиреЗ рд╡рд┐рдЪрд╛рд░ рд▓рд┐рдЦрд┐рдПред
(рдЦ) рд╣рд╛рд▓рджрд╛рд░ рд╕рд╛рд╣рдм рдмрд╛рд░-рдмрд╛рд░ рдХреНрдпрд╛ рд╕реЛрдЪрддреЗ рдФрд░ рдХреНрдпреЛрдВ ?
(рдЧ) рдЧрд┐рд░рддреА рдЖрд░реНрдерд┐рдХ рджрд╢рд╛ рдиреЗ рдордиреНрдиреВ рднрдВрдбрд╛рд░реА рдХреЗ рдкрд┐рддрд╛ рдХреЗ рд╡реНрдпрдХреНрддрд┐рддреНрд╡ рдкрд░ рдХреНрдпрд╛ рдкреНрд░рднрд╛рд╡ рдбрд╛рд▓рд╛?’рдПрдХ рдХрд╣рд╛рдиреА рдпрд╣ рднреА’ рдкрд╛рда рдХреЗ рдЖрдзрд╛рд░ рдкрд░ рдмрддрд╛рдЗрдПред
(рдШ) рдЖрдкрдХреЗ рд╡рд┐рдЪрд╛рд░ рд╕реЗ рдмреБрд▓реНрдХреЗ рдиреЗ рднрд╛рд░рдд рдЖрдиреЗ рдХрд╛ рдорди рдХреНрдпреЛрдВ рдмрдирд╛рдпрд╛ рд╣реЛрдЧрд╛? тАШрдорд╛рдирд╡реАрдп рдХрд░реБрдгрд╛ рдХреА рджрд┐рд╡реНрдп рдЪрдордХ’ рдкрд╛рда рдХреЗ рдЖрдзрд╛рд░ рдкрд░ рдЙрддреНрддрд░ рджреАрдЬрд┐рдПред

рдкреНрд░.9. рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдкрджреНрдпрд╛рдВрд╢ рд╕реЗ рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрдиреЛрдВ рдХреЗ рдЙрддреНрддрд░ рджреАрдЬрд┐рдП
рдмрд╛рджрд▓, рдЧрд░рдЬреЛ!
рдШреЗрд░ рдШреЗрд░ рдШреЛрд░ рдЧрдЧрди, рдзрд╛рд░рд╛рдзрд░ рдУ!
рд▓рд▓рд┐рдд рд▓рд▓рд┐рдд, рдХрд╛рд▓реЗ рдШреБрдШрд░рд╛рд▓реЗ ,
рдмрд╛рд▓ рдХрд▓реНрдкрдирд╛ рдХреЗ-рд╕реЗ рдкрд╛рд▓реЗ ,
рд╡рд┐рджреНрдпреБрдд-рдЫрдмрд┐ рдЙрд░ рдореЗрдВ, рдХрд╡рд┐, рдирд╡рдЬреАрд╡рди рд╡рд╛рд▓реЗ!
рд╡рдЬреНрд░ рдЫрд┐рдкрд╛, рдиреВрддрди рдХрд╡рд┐рддрд╛
рдлрд┐рд░ рднрд░ рджреЛ-
рдмрд╛рджрд▓, рдЧрд░рдЬреЛ!
(рдХ) рдХрд╡рд┐ рдмрд╛рджрд▓ рдХреЛ рдХреНрдпрд╛ рдШреЗрд░рдиреЗ рдХреЗ рд▓рд┐рдП рдХрд╣ рд░рд╣рд╛ рд╣реИ рдФрд░ рдХреНрдпреЛрдВ ?
(рдЦ) рд▓рд▓рд┐рдд рдХрд╛рд▓реЗ рдзреБрдВрдШрд░рд╛рд▓реЗ рдмрд╛рд▓реЛрдВ рдХреА рдХрд▓реНрдкрдирд╛ рдХрд┐рд╕рдХреЗ рд▓рд┐рдП рдХреА рдЧрдИ рд╣реИ?
(рдЧ) рдХрд╡рд┐ рдмрд╛рджрд▓ рдХреЛ рдЧрд░рдЬрдиреЗ рдХреЗ рд▓рд┐рдП рдХреНрдпреЛрдВ рдХрд╣ рд░рд╣рд╛ рд╣реИ?

рдкреНрд░. 10. рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдореЗрдВ рд╕реЗ рдХрд┐рдиреНрд╣реАрдВ рдЪрд╛рд░ рдкреНрд░рд╢реНрдиреЛрдВ рдХреЗ рдЙрддреНрддрд░ рджреАрдЬрд┐рдП
(рдХ) рдХрд╡рд┐ рдиреЗ ‘рд╢реНрд░реАрдмреНрд░рдЬрджреВрд▓рд╣’ рдХрд┐рд╕рдХреЗ рд▓рд┐рдП рдкреНрд░рдпреБрдХреНрдд рдХрд┐рдпрд╛ рд╣реИ рддрдерд╛ рдЙрдиреНрд╣реЗрдВ ‘рд╕рдВрд╕рд╛рд░ рд░реВрдкреА рдордВрджрд┐рд░ рдХрд╛ рджреАрдкрдХ’ рдХреНрдпреЛрдВ рдХрд╣рд╛ рд╣реИ?
(рдЦ) рдЧрд╛рдпрдХреЛрдВ рдХреЛ рдЧрд╛рдпрди рдХреЗ рджреМрд░рд╛рди рдХреМрди-рдХреМрдирд╕реА рдХрдард┐рдирд╛рдЗрдпрд╛рдБ рдЖрддреА рд╣реИрдВ?
(рдЧ) рдХреНрдпрд╛ рдЖрдк рдЗрд╕ рдмрд╛рдд рд╕реЗ рдкреВрд░реА рддрд░рд╣ рд╕рд╣рдордд рд╣реИрдВ рдХрд┐ рдмреЗрдЯреА рдЕрдкрдиреА рдорд╛рдБ рдХреЗ рд╕рдмрд╕реЗ рдирд┐рдХрдЯ рдФрд░ рдЙрд╕рдХреЗ рд╕реБрдЦ-рджреБрдГрдЦ рдХреА рд╕рд╛рдереА рд╣реЛрддреА рд╣реИ? ‘рдХрдиреНрдпрд╛рджрд╛рди’ рдХрд╡рд┐рддрд╛ рдХреЗ рдЖрдзрд╛рд░ рдкрд░ рдЙрддреНрддрд░ рджреАрдЬрд┐рдПред
(рдШ) рдХрд╡рд┐ рдмрд╛рджрд▓ рд╕реЗ рдлреБрд╣рд╛рд░, рд░рд┐рдордЭрд┐рдо рддрдерд╛ рдмрд░рд╕рдиреЗ рдХреЗ рд╕реНрдерд╛рди рдкрд░ рдЧрд░рдЬрдиреЗ рдХреЗ рд▓рд┐рдП рдХреНрдпреЛрдВ рдХрд╣ рд░рд╣реЗ рд╣реИрдВ?

рдкреНрд░. 11. рдкрд╣рд╛рдбрд╝реЛрдВ рдкрд░ рдкреБрд░реБрд╖реЛрдВ рдХреА рдЕрдкреЗрдХреНрд╖рд╛ рд╕реНрддреНрд░рд┐рдпреЛрдВ рдХрд╛ рдЬреАрд╡рди рдЕрдзрд┐рдХ рдХрдард┐рдирд╛рдЗрдпреЛрдВ рд╕реЗ рднрд░рд╛ рд╣реИред рдЙрди рдХрдард┐рдирд╛рдЗрдпреЛрдВ рдХрд╛ рдирд┐рд╡рд╛рд░рдг рд╡реЗ рдХрд░реНрддрд╡реНрдпрдкреНрд░рд┐рдпрддрд╛ рд╕реЗ рд╣реА рдХрд░рддреА рд╣реИрдВ-рд╕реЛрджрд╛рд╣рд░рдг рд╕реНрдкрд╖реНрдЯ рдХреАрдЬрд┐рдПред

рдЕрдерд╡рд╛

“рд▓рдбрд╝рдХреЗ рдФрд░ рдмрдВрджрд░ рдкрд░рд╛рдИ рдкреАрд░ рдирд╣реАрдВ рд╕рдордЭрддреЗред” рдХреНрдпрд╛ рдЖрдк рдЗрд╕ рдмрд╛рдд рд╕реЗ рд╕рд╣рдордд рд╣реИрдВ? рдХреНрдпрд╛ рдпрд╣ рдЙрдЪрд┐рдд рд╣реИ? рд╕реНрдкрд╖реНрдЯ рдХреАрдЬрд┐рдПред

рдЦрдгреНрдб (рдШ) : рд▓реЗрдЦрди

рдкреНрд░. 12. рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдореЗрдВ рд╕реЗ рдХрд┐рд╕реА рдПрдХ рд╡рд┐рд╖рдп рдкрд░ рджрд┐рдП рдЧрдП рд╕рдВрдХреЗрдд-рдмрд┐рдиреНрджреБрдУрдВ рдХреЗ рдЖрдзрд╛рд░ рдкрд░ рд▓рдЧрднрдЧ 200 рд╕реЗ 250 рд╢рдмреНрджреЛрдВ рдореЗрдВ рдирд┐рдмрдВрдз рд▓рд┐рдЦрд┐рдПред [10]

(рдХ) рдиреЛрдЯрдмрдВрджреА : рд░рд╛рд╖реНрдЯреНрд░рд╣рд┐рдд рдХреА рдУрд░ рдПрдХ рдмрдбрд╝рд╛ рдХрджрдо

  • рдиреЛрдЯрдмрдВрджреА рдХреА рдШреЛрд╖рдгрд╛
  • рдХрд╛рд▓реЗрдзрди рдкрд░ рд╡рд╛рд░
  • рд░рд╛рд╖реНрдЯреНрд░рд╣рд┐рдд рдХреЗ рд▓рд┐рдП рджреЗрд╢ рдХреА рдЬрдирддрд╛ рдХрд╛ рдЬрд╝рдмрд░рджрд╕реНрдд рд╕рдорд░реНрдерди

(рдЦ) рд╕рдорд╛рдЪрд╛рд░-рдкрддреНрд░реЛрдВ рдХреА рдЙрдкрдпреЛрдЧрд┐рддрд╛

  • рднреВрдорд┐рдХрд╛
  • рдЖрд░рдореНрдн рдПрд╡рдВ рдкреНрд░рд╕рд╛рд░
  • рдорд╣рддреНрд╡ рдПрд╡рдВ рдЙрдкрдпреЛрдЧрд┐рддрд╛
  • рд╕рд╛рдорд╛рдЬрд┐рдХ рдкрд░рд┐рд╡рд░реНрддрди рдореЗрдВ рд╕рдорд╛рдЪрд╛рд░-рдкрддреНрд░реЛрдВ рдХреА рднреВрдорд┐рдХрд╛
  • рдЙрдкрд╕рдВрд╣рд╛рд░

(рдЧ) рдХрдиреНрдпрд╛ рднреНрд░реВрдг рд╣рддреНрдпрд╛ : рдХрд╛рд░рдг рдФрд░ рдирд┐рд╡рд╛рд░рдг

  • рднрд╛рд░рддреАрдп рд╕рдорд╛рдЬ рдХрд╛ рдХрд▓рдВрдХ
  • рдХрдиреНрдпрд╛рдУрдВ рдХреЗ рдкреНрд░рддрд┐ рд╕рдорд╛рдЬ рдХреА рджреВрд╖рд┐рдд рд╕реЛрдЪ
  • рдЗрд╕рдХреЗ рдХрд╛рд░рдг
  • рдЗрд╕ рдмреБрд░рд╛рдИ рдХреЛ рд░реЛрдХрдиреЗ рдХреЗ рдЙрдкрд╛рдп
  • рд╕рд░рдХрд╛рд░реА рдкреНрд░рдпрд╛рд╕
  • рдЙрдкрд╕рдВрд╣рд╛рд░

рдкреНрд░. 13. рд╡рд┐рджреНрдпрд╛рд▓рдп рдореЗрдВ рджрд╕рд╡реАрдВ рдФрд░ рдмрд╛рд░рд╣рд╡реАрдВ рдХрдХреНрд╖рд╛ рдХреЗ рдЕрдЪреНрдЫреЗ рдкрд░рд┐рдгрд╛рдореЛрдВ рдкрд░ рдкреНрд░рдзрд╛рдирд╛рдЪрд╛рд░реНрдп рдХреЛ рдкрддреНрд░ рд▓рд┐рдЦрдХрд░ рд╕реБрдЭрд╛рдЗрдП рдХрд┐ рдЙрдиреНрд╣реЗрдВ рдФрд░ рдЕрдЪреНрдЫрд╛ рдХреИрд╕реЗ рдмрдирд╛рдпрд╛ рдЬрд╛ рд╕рдХрддрд╛ рд╣реИ?

рдЕрдерд╡рд╛

рдЕрдкрдиреЗ рдХреНрд╖реЗрддреНрд░ рдореЗрдВ рдПрдХ рдирдпрд╛ рдкреБрд╕реНрддрдХрд╛рд▓рдп рд╕реНрдерд╛рдкрд┐рдд рдХрд░рдиреЗ рд╣реЗрддреБ рд╕рд╛рдВрд╕рдж рдорд╣реЛрджрдп рдХреЛ рдПрдХ рдкрддреНрд░ рд▓рд┐рдЦрд┐рдПред

рдкреНрд░. 14. рдЖрдкрдХреА рдХрдореНрдкрдиреА рдиреЗ рдореЛрдЯрд╛рдкреЗ рдХреА рд░реЛрдХрдерд╛рдо рдХреЗ рд▓рд┐рдпреЗ рдПрдХ рдЖрдпреБрд░реНрд╡реЗрджрд┐рдХ рдЪреВрд░реНрдг/рд╕реАрд░рдк/рдХреИрдкреНрд╕реВрд▓ рдмрдирд╛рдпрд╛ рд╣реИред 25-50 рд╢рдмреНрджреЛрдВ рдореЗрдВ рдЙрд╕рдХрд╛ рдПрдХ рд╡рд┐рдЬреНрдЮрд╛рдкрди рддреИрдпрд╛рд░ рдХрд░реЗрдВред

рдЕрдерд╡рд╛

рд╡рд┐рджреНрдпрд╛рд▓рдп рдХреЗ рд╡рд╛рд░реНрд╖рд┐рдХреЛрддреНрд╕рд╡ рдХреЗ рдЕрд╡рд╕рд░ рдкрд░ рд╡рд┐рджреНрдпрд╛рд░реНрдерд┐рдпреЛрдВ рджреНрд╡рд╛рд░рд╛ рдирд┐рд░реНрдорд┐рдд рд╣рд╕реНрддрдХрд▓рд╛ рдХреА рд╡рд╕реНрддреБрдУрдВ рдХреА рдкреНрд░рджрд░реНрд╢рдиреА рдХреЗ рдкреНрд░рдЪрд╛рд░ рд╣реЗрддреБ рд▓рдЧрднрдЧ 50 рд╢рдмреНрджреЛрдВ рдореЗрдВ рдПрдХ рд╡рд┐рдЬреНрдЮрд╛рдкрди рд▓рд┐рдЦрд┐рдПред

рдЙрддреНрддрд░рдорд╛рд▓рд╛

рдЦрдгреНрдб (рдХ)

рдЙрддреНрддрд░ 1. (i) рд╕рд╛рдорд╛рдЬрд┐рдХ рдХреНрд╖реЗрддреНрд░ рдореЗрдВ рдЬрд╛рддрд┐, рдзрд░реНрдо, рд╡реНрдпрд╡рд╕рд╛рдп, рд░рдВрдЧ рдЖрджрд┐ рдХреЗ рдЖрдзрд╛рд░ рдкрд░ рднреЗрджрднрд╛рд╡ рди рдХрд░рдиреА рддрдерд╛ рд╕рднреА рдХреЛ рдПрдХ рд╕рдорд╛рди рд╕реБрд╡рд┐рдзрд╛рдПрдБ рдПрд╡рдВ рдЕрдзрд┐рдХрд╛рд░ рдкреНрд░рджрд╛рди рдХрд░рд╛рдирд╛ рд╕рд╛рдорд╛рдЬрд┐рдХ рд╕рдорд╛рдирддрд╛ рдХрд╣рд▓рд╛рддрд╛ рд╣реИред
(ii) рд╣рдорд╛рд░реЗ рджреЗрд╢ рдореЗрдВ рд╕рд╛рдорд╛рдЬрд┐рдХ рдЕрд╕рдорд╛рдирддрд╛ рдХрдИ рд░реВрдкреЛрдВ рдореЗрдВ рджрд┐рдЦрд╛рдИ рджреЗрддреА рд╣реИред рдЬреИрд╕реЗ-рдЬрд╛рддрд┐-рдкреНрд░рдерд╛ рдпрд╣ рд╕рд╛рдорд╛рдЬрд┐рдХ рдЕрд╕рдорд╛рдирддрд╛ рдХрд╛ рдПрдХ рдХрд╛рд░рдг рд╣реИред рдЗрд╕рдХреЗ рдХрд╛рд░рдг рдХрд░реЛрдбрд╝реЛрдВ рд╡реНрдпрдХреНрддрд┐рдпреЛрдВ рдХреЛ рдЕрдЫреВрдд рд╕рдордЭрд╛ рдЬрд╛рддрд╛ рд╣реИ рдФрд░ рдЙрдиреНрд╣реЗрдВ рд╕рд╛рдорд╛рдЬрд┐рдХ рдЕрдзрд┐рдХрд╛рд░реЛрдВ рд╕реЗ рднреА рд╡рдВрдЪрд┐рдд рдХрд░ рджрд┐рдпрд╛ рдЬрд╛рддрд╛ рд╣реИред рд▓рдбрд╝рдХрд┐рдпреЛрдВ рдХреЗ рд╕рд╛рде рднреЗрджрднрд╛рд╡ рдХрд┐рдпрд╛ рдЬрд╛рддрд╛ рд╣реИред рдЙрдиреНрд╣реЗрдВ рдкреНрд░рд╛рдпрдГ рд╡реЗ рд╕реБрд╡рд┐рдзрд╛рдПрдБ рдирд╣реАрдВ рджреА рдЬрд╛рддреАрдВ рдЬреЛ рд▓рдбрд╝рдХреЛрдВ рдХреЛ рджреА рдЬрд╛рддреА рд╣реИрдВред
(iii) рд░рд╛рдЬреНрдп рдореЗрдВ рд╕рднреА рдирд╛рдЧрд░рд┐рдХреЛрдВ рдХреЛ рд╕рдорд╛рди рдЕрдзрд┐рдХрд╛рд░ рдкреНрд░рд╛рдкреНрдд рд╣реЛрдВред рдЙрдирдХреЗ рд╕рд╛рде рдЬрд╛рддрд┐, рдзрд░реНрдо рдЖрджрд┐ рдХреЗ рдЖрдзрд╛рд░ рдкрд░ рдХреЛрдИ рднреЗрджрднрд╛рд╡ рди рдХрд┐рдпрд╛ рдЬрд╛рдПред рдЧрд░реАрдм-рдЕрдореАрд░, рдКрдБрдЪ-рдиреАрдЪ рд╕рднреА рдХреЛ рд╕рдорд╛рди рд░реВрдк рд╕реЗ рдиреНрдпрд╛рдпрд╛рд▓рдпреЛрдВ рд╕реЗ рдиреНрдпрд╛рдп рдорд┐рд▓реЗред рдХреЛрдИ рднреА рдЕрдкрд░рд╛рдзреА рджрдВрдб рд╕реЗ рдмрдЪ рди рдкрд╛рдПред рдЗрд╕ рдкреНрд░рдХрд╛рд░ рдХреА рд╕рдорд╛рдирддрд╛ рдХреЛ рд╣реА рдирд╛рдЧрд░рд┐рдХ рд╕рдорд╛рдирддрд╛ рдХрд╣рддреЗ рд╣реИрдВред
(iv) рдорд╛рддрд╛-рдкрд┐рддрд╛ рдкреНрд░рд╛рдп: рд▓рдбрд╝рдХрд┐рдпреЛрдВ рдХреЛ рд╡реЗ рд╕реБрд╡рд┐рдзрд╛рдПрдБ рдирд╣реАрдВ рджреЗрддреЗ рд╣реИрдВ рдЬреЛ рд╡реЗ рдЕрдкрдиреЗ рд▓рдбрд╝рдХреЛрдВ рдХреЛ рджреЗрддреЗ рд╣реИрдВ, рдЬрд┐рд╕рдХреЗ рдХрд╛рд░рдг рд▓рдбрд╝рдХрд┐рдпреЛрдВ рдХрд╛ рд╢рд╛рд░реАрд░рд┐рдХ рдФрд░ рдорд╛рдирд╕рд┐рдХ рд╡рд┐рдХрд╛рд╕ рд╕реБрдЪрд╛рд░реБ рд░реВрдк рд╕реЗ рдирд╣реАрдВ рд╣реЛ рдкрд╛рддрд╛ рд╣реИред
(v) рд╕рд╛рдорд╛рдЬрд┐рдХ рд╡ рдирд╛рдЧрд░рд┐рдХ рд╕рдорд╛рдирддрд╛ред

рдЙрддреНрддрд░ 2. (i) ‘рдЕрд╕рдлрд▓рддрд╛ рдПрдХ рдЪреБрдиреМрддреА рд╣реИ рд╕реНрд╡реАрдХрд╛рд░ рдХрд░реЛред’ рдЗрд╕ рдкрдВрдХреНрддрд┐ рджреНрд╡рд╛рд░рд╛ рдХрд╡рд┐ рдХрд╣рдирд╛ рдЪрд╛рд╣рддрд╛ рд╣реИ рдХрд┐ рдХреЛрдИ рдлрд░реНрдХ рдирд╣реАрдВ рдкрдбрд╝рддрд╛ рдХрд┐ рд╣рдо рдХрд┐рддрдиреА рдмрд╛рд░ рд╣рд╛рд░ рдЬрд╛рддреЗ рд╣реИрдВред рд╡рд╣ рдХрд╣рддрд╛ рд╣реИ рдХрд┐ рд╣рдореЗрдВ рдЪреБрдиреМрддреА рдХреЗ рд░реВрдк рдореЗрдВ рд╡рд┐рдлрд▓рддрд╛ рдХреЛ рд╕реНрд╡реАрдХрд╛рд░ рдХрд░рдирд╛ рдЪрд╛рд╣рд┐рдПред рд╣рдореЗрдВ рдирд┐рд░рд╛рд╢ рдирд╣реАрдВ рд╣реЛрдирд╛ рдЪрд╛рд╣рд┐рдП рдФрд░ рдЖрд╢рд╛ рдЦреЛрдиреА рдирд╣реАрдВ рдЪрд╛рд╣рд┐рдП, рдкрд░рдиреНрддреБ рд╣рдореЗрдВ рджреЗрдЦрдирд╛ рдЪрд╛рд╣рд┐рдП рдХрд┐ рд╡рд╛рд╕реНрддрд╡ рдореЗрдВ рдХреНрдпрд╛ рдХрдореА рд░рд╣реА рдФрд░ рдХреНрдпрд╛ рдЧрд▓рддреА рдХреА ? рд╡рд╣ рд╣рдореЗрдВ рд╕рд▓рд╛рд╣ рджреЗрддрд╛ рд╣реИ рдХрд┐ рд╣рдореЗрдВ рдкреНрд░рдпрд╛рд╕ рдХрд░рддреЗ рд░рд╣рдирд╛ рдЪрд╛рд╣рд┐рдП, рдЬрдм рддрдХ рдХрд┐ рд╕рдлрд▓рддрд╛ рди рдорд┐рд▓ рдЬрд╛рдпреЗред
(ii) тАШрдорд┐рд▓рддреЗ рдирд╣реАрдВ рд╕рд╣рдЬ рд╣реА рдореЛрддреА рдкрд╛рдиреА рдореЗрдВред’
рдЗрд╕ рдкрдВрдХреНрддрд┐ рдореЗрдВ рд╕рдлрд▓рддрд╛ рдХреЛ ‘рдореЛрддреА’ рдХрд╣рд╛ рдЧрдпрд╛ рд╣реИред рдЗрд╕ рд╕рдлрд▓рддрд╛ рд░реВрдкреА рдореЛрддреА рдХреЛ рд╡рд╣реА рдкреНрд░рд╛рдкреНрдд рдХрд░ рд╕рдХрддрд╛ рд╣реИ рдЬреЛ рдореЗрд╣рдирдд рдХрд░рддрд╛ рд╣реИ рдФрд░ рдЕрд╕рдлрд▓рддрд╛ рд╕реЗ рдирд╣реАрдВ рдбрд░рддрд╛ рд╣реИред
(iii) рдЪреАрдВрдЯреА рд╕реЗ рдкреНрд░реЗрд░рдгрд╛ рд▓реЗрдХрд░ рд╣рдореЗрдВ рдпрд╣ рд▓рд╛рдн рдкреНрд░рд╛рдкреНрдд рд╣реЛрдЧрд╛ рдХрд┐ рд╣рдо рдЙрд╕рд╕реЗ рд╕реАрдЦ рд╕рдХреЗрдВрдЧреЗ рдХрд┐ рдЬреАрд╡рди рдореЗрдВ рдХрд┐рддрдиреА рдмрд╛рд░ рднреА рдЕрд╕рдлрд▓рддрд╛рдПрдБ рдЖ рдЬрд╛рдПрдБ, рдкреНрд░рдпрд╛рд╕ рдХрд░рдирд╛ рдирд╣реАрдВ рдЫреЛрдбрд╝рдирд╛ рдЪрд╛рд╣рд┐рдПред рдЬрдм рддрдХ рд╕рдлрд▓рддрд╛ рди рдорд┐рд▓ рдЬрд╛рдП рддрдм рддрдХ рдореЗрд╣рдирдд рдХрд░рддреЗ рд░рд╣рдирд╛ рдЪрд╛рд╣рд┐рдП рдФрд░ рджреГрдврд╝рддрд╛ рд╕реЗ рдЖрдЧреЗ рдмрдврд╝рддреЗ рд░рд╣рдирд╛ рдЪрд╛рд╣рд┐рдПред
(iv) рдХрд╡рд┐рддрд╛ рдореЗрдВ рдХрд╡рд┐ рдкреНрд░реЗрд░рдгрд╛ рджреЗ рд░рд╣рд╛ рд╣реИ рдХрд┐ рдХреЛрд╢рд┐рд╢ рдХрд░рддреЗ рд░рд╣рдирд╛ рдЪрд╛рд╣рд┐рдП, рдПрдХ рдпрд╛ рдЙрд╕рд╕реЗ рдЕрдзрд┐рдХ рд╡рд┐рдлрд▓рддрд╛ рд╕реЗ рдирд┐рд░рд╛рд╢ рдирд╣реАрдВ рд╣реЛрдирд╛ рдЪрд╛рд╣рд┐рдПред рдЕрдВрдд рдореЗрдВ рд╕рдлрд▓рддрд╛ рдЬрд░реВрд░ рдкреНрд░рд╛рдкреНрдд рд╣реЛрдЧреАред
(v) рдирдиреНрд╣реАрдВ рдЪреАрдВрдЯреА рдХреЗ рдЙрджрд╛рд╣рд░рдг рджреНрд╡рд╛рд░рд╛ рдХрд╡рд┐ рдиреЗ рдЙрди рд▓реЛрдЧреЛрдВ рдХреЛ рдкреНрд░реЗрд░рдгрд╛ рджреА рд╣реИ рдЬреЛ рдЕрд╕рдлрд▓рддрд╛ рд╕реЗ рдбрд░рддреЗ рд╣реИрдВ, рдирд┐рд░рд╛рд╢рд╛ рдореЗрдВ рд░рд╣рддреЗ рд╣реИрдВ рдФрд░ рдЬреЛ рдкреНрд░рдпрд╛рд╕ рдирд╣реАрдВ рдХрд░рддреЗ рд╣реИрдВред

рдЦрдгреНрдб (рдЦ)

рдЙрддреНрддрд░ 3.
(рдХ) рддреБрдореНрд╣рд╛рд░реЗ рдШрд░ рдЬрд╛рддреЗ рд╣реА рд╡рд╣ рд░реЛрдиреЗ рд▓рдЧреАред
(рдЦ) рд╕рдВрдпреБрдХреНрдд рд╡рд╛рдХреНрдпредред
(рдЧ) рдШрдВрдЯреА рдмрдЬреА рдФрд░ рдЫрд╛рддреНрд░ рдкреБрд╕реНрддрдХреЗрдВ рд▓реЗрдХрд░ рдХрдХреНрд╖рд╛ рд╕реЗ рдмрд╛рд╣рд░ рдирд┐рдХрд▓рдХрд░ рдШрд░ рдЪрд▓реЗ рдЧрдПред

рдЙрддреНрддрд░ 4. (рдХ) рдЙрд╕рдиреЗ рдЙрдЫрд▓рдХрд░ рдкрддрдВрдЧ рдкрдХрдбрд╝ рд▓реАред
(рдЦ) рдХрд░реНрддреГрд╡рд╛рдЪреНрдпред
(рдЧ) рджрд┐рд▓реАрдк рд╕реЗ рджреМрдбрд╝рд╛ рдЧрдпрд╛ред
(рдШ) рдХрд╡рдпрд┐рддреНрд░реА рдХреЗ рджреНрд╡рд╛рд░рд╛ рдХрд╡рд┐рддрд╛ рдкрдврд╝реА рдЬрд╛рддреА рд╣реИред

рдЙрддреНрддрд░ 5. (рдХ) рдорд░ рдорд┐рдЯреВрдЧреА-рдЕрдХрд░реНрдордХ рдХреНрд░рд┐рдпрд╛, рд╕реНрддреНрд░реАрд▓рд┐рдВрдЧ, рдПрдХрд╡рдЪрди, рднрд╡рд┐рд╖реНрдпрдд рдХрд╛рд▓, рдЙрддреНрддрдо рдкреБрд░реБрд╖, рдХрд░реНрддреГрд╡рд╛рдЪреНрдп, ‘рдореИрдВ’ рдХреНрд░рд┐рдпрд╛ рдХреА рдХрд░реНрддрд╛ред
(рдЦ) рдЬрд▓реНрджреА-рдЕрд╡реНрдпрдп, рдХрд╛рд▓рд╡рд╛рдЪрдХ, рдХреНрд░рд┐рдпрд╛-рд╡рд┐рд╢реЗрд╖рдг, рдХреНрд░рд┐рдпрд╛ рдХрд╛ рд╡рд┐рд╢реЗрд╖рдг’ рднрд╛рдЧреЛ’ ред
(рдЧ) рд╣рдо-рдкреБрд░реБрд╖рд╡рд╛рдЪрдХ рд╕рд░реНрд╡рдирд╛рдо, рдЙрддреНрддрдо рдкреБрд░реБрд╖, рдкреБрд▓реНрд▓рд┐рдЧ, рдХрд░реНрддрд╛ рдХрд╛рд░рдХред
(рдШ) рдиреМрдХрд░-рдЬрд╛рддрд┐рд╡рд╛рдЪрдХ рд╕рдВрдЬреНрдЮрд╛, рдкреБрд▓реНрд▓рд┐рдЧ, рдПрдХрд╡рдЪрди, рдЕрдкрд╛рджрд╛рди рдХрд╛рд░рдХ рдореЗрдВред

рдЙрддреНрддрд░ 6. (рдХ) рд╡рд╛рддреНрд╕рд▓реНрдп рд░рд╕ред
(рдЦ) рднрдХреНрддрд┐ ред
(рдЧ) рдШреГрдгрд╛ (рдЬреБрдЧреБрдкреНрд╕рд╛) рд╡реАрднрддреНрд╕ рд░рд╕ред
(рдШ) рд░рд╕ рдирд┐рд╖реНрдкрддреНрддрд┐ рдореЗрдВ рд╕рд╣рд╛рдпрдХ рдЕрд╡рдпрд╡ рд╣реИрдВ-рд╕реНрдерд╛рдпреА рднрд╛рд╡, рд╡рд┐рднрд╛рд╡, рдЕрдиреБрднрд╛рд╡ рддрдерд╛ рд╕рдВрдЪрд╛рд░реА рднрд╛рд╡ред

рдЦрдгреНрдб (рдЧ)

рдЙрддреНрддрд░ 7. (рдХ) рд▓реЗрдЦрдХ рдиреЗ рдлрд╛рджрд░ рдмреБрд▓реНрдХреЗ рдХреЗ рд╕реНрд╡рднрд╛рд╡ рдХреА рдХрд▓реНрдкрдирд╛ рдРрд╕реА рдХреА рд╣реИ рдХрд┐ рдЙрдирдХреЛ рджреЗрдЦрдХрд░ рд╣реА рдорди рдореЗрдВ рдХрд░реБрдгрд╛ рдХрд╛ рднрд╛рд╡ рдЬрд╛рдЧреНрд░рдд рд╣реЛ рдЬрд╛рддрд╛ рдерд╛ рдорд╛рдиреЛ рдирд┐рд░реНрдорд▓ рдЬрд▓ рдореЗрдВ рд╕реНрдирд╛рди рдХрд░ рд░рд╣реЗ рд╣реЛрдВред рдЙрдирдХреЛ рд╕реБрдирдХрд░ рдорди рдХрд░реНрдо рдХрд░рдиреЗ рдХреЗ рд▓рд┐рдП рджреГрдврд╝ рд╣реЛ рдЬрд╛рддрд╛ рдерд╛ред
(рдЦ) рдлрд╛рджрд░ рдмреБрд▓реНрдХреЗ рд╕рдВрдХрд▓реНрдк рд╕реЗ рд╕рдВрдиреНрдпрд╛рд╕реА рдереЗред рдЙрдиреНрд╣реЛрдВрдиреЗ рдИрд╕рд╛рдИ рдкрд╛рджрд░реА рдмрдирдХрд░ рдШрд░-рдЧреГрд╣рд╕реНрдереА рд╕реЗ рд╕рдВрдиреНрдпрд╛рд╕ рддреЛ рд▓реЗ рд▓рд┐рдпрд╛ рдерд╛, рдкрд░ рдЙрдирдХреЗ рдорди рдореЗрдВ рдЕрдкрдиреЛрдВ-рдЖрддреНрдореАрдпреЛрдВ рдХреЗ рдкреНрд░рддрд┐ рдЧрд╣рд░рд╛ рд▓рдЧрд╛рд╡ рдерд╛ред рд╕рд╛рдВрд╕рд╛рд░рд┐рдХ рд▓рдЧрд╛рд╡ рд╕рдВрдиреНрдпрд╛рд╕рд┐рдпреЛрдВ рдХрд╛ рд▓рдХреНрд╖рдг рдирд╣реАрдВ рд╣реИред рдкрд░ рдлрд╛рджрд░ рдмреБрд▓реНрдХреЗ рд▓реЗрдЦрдХ рдХреЗ рдкреНрд░рддрд┐, рдЙрдирдХреЗ рдкрд░рд┐рд╡рд╛рд░реАрдЬрдиреЛрдВ рдХреЗ рдкреНрд░рддрд┐ рдпрд╛ рдЕрдиреНрдп рдкрд░рд┐рдЪрд┐рддреЛрдВ рдХреЗ рдкреНрд░рддрд┐ рдЧрд╣рд░рд╛ рд╕реНрдиреЗрд╣ рд░рдЦрддреЗ рдереЗред рд╡реЗ рд▓реЗрдЦрдХ рдХреЛ рдЧрд▓реЗ рд▓рдЧрд╛рдХрд░ рдорд┐рд▓рддреЗ рдереЗред рд╡реЗ рдЬрдиреНрдо, рдореГрддреНрдпреБ рдЬреИрд╕реЗ рд╕рдорд╛рд░реЛрд╣реЛрдВ рдореЗрдВ рдкреВрд░реЗ рд╕реНрдиреЗрд╣рднрд╛рд╡ рд╕реЗ рд╕рдореНрдорд┐рд▓рд┐рдд рд╣реЛрддреЗ рдереЗред
(рдЧ) рдлрд╛рджрд░ рдмреБрд▓реНрдХреЗ рдХрд╛ рд╡реНрдпрдХреНрддрд┐рддреНрд╡ рд╡рд╛рддреНрд╕рд▓реНрдпрдордп рдФрд░ рдХрд░реБрдгрд╛рдкреВрд░реНрдг рдерд╛ред рдЙрдирдХреА рдмрд╛рдБрд╣реЗрдВ рд╣рд░ рдХрд┐рд╕реА рдХреЛ рдЧрд▓реЗ рд▓рдЧрд╛рдиреЗ рдХреЗ рд▓рд┐рдП рддреИрдпрд╛рд░ рд░рд╣рддреА рдереАрдВред рд╡реЗ рдЕрдкрд░рд┐рдЪрд┐рддреЛрдВ рдХреЛ рднреА рдкрд░рд┐рдЪрд┐рдд рдХреА рддрд░рд╣ рдкреНрд░реЗрдо рдХрд░рддреЗ рдереЗред

рдЙрддреНрддрд░ 8. (рдХ) рдмрд╛рд▓рдЧреЛрдмрд┐рди рднрдЧрдд рдЧреГрд╣рд╕реНрде рдЬреАрд╡рди рдЬреАрддреЗ рд╣реБрдП рдореЛрд╣-рдорд╛рдпрд╛ рдореЗрдВ рдирд╣реАрдВ рдмрдБрдзреЗ рдереЗред рд╡реЗ рдХрдмреАрд░ рдХреЛ рдЕрдкрдирд╛ рдЗрд╖реНрдЯ рдорд╛рдирддреЗ рдереЗ рддрдерд╛ рдЕрдкрдиреЗ рдЦреЗрдд рдХреА рдкреИрджрд╛рд╡рд╛рд░ рдХреЛ рднреА рдХрдмреАрд░рдкрдВрдереА рдорда рдХреЛ рдЕрд░реНрдкрд┐рдд рдХрд░ рджреЗрддреЗ рдереЗред рд╡рд╣рд╛рдБ рд╕реЗ рдкреНрд░рд╕рд╛рдж рд░реВрдк рдореЗрдВ рдЬреЛ рднреА рдкреНрд░рд╛рдкреНрдд рд╣реЛрддрд╛ рдерд╛, рдЙрд╕реА рд╕реЗ рд╡реЗ рдЧреБрдЬрд╛рд░рд╛ рдХрд░рддреЗ рдереЗред рд╡реЗ рдХрднреА рдЭреВрда рдирд╣реАрдВ рдмреЛрд▓рддреЗ рдереЗ рдФрд░ рд╕рдмрд╕реЗ рдЦрд░рд╛ рд╡реНрдпрд╡рд╣рд╛рд░ рдХрд░рддреЗ рдереЗред рд╡реЗ рдХрднреА рднреА рдХрд┐рд╕реА рдХреА рдЪреАрдЬ рдирд╣реАрдВ рдЫреВрддреЗ рдереЗред рдЙрдирдХрд╛ рдЖрдЪрд░рдг рд╕рд╛рдзреБ рдХреАред рдкрд░рд┐рднрд╛рд╖рд╛ рдкрд░ рдкреВрд░реА рддрд░рд╣ рдЦрд░рд╛ рдЙрддрд░рддрд╛ рдерд╛ред рдЗрд╕реА рдХрд╛рд░рдг рдЙрдиреНрд╣реЗрдВ рд╕рд╛рдзреБ рдХрд╣рд╛ рдЬрд╛рддрд╛ рдерд╛ред
(рдЦ) рд╣рд╛рд▓рджрд╛рд░ рд╕рд╛рд╣рдм рдмрд╛рд░-рдмрд╛рд░ рдпрд╣реА рд╕реЛрдЪрддреЗ рдереЗ рдХрд┐ рдХрд╕реНрдмреЗ рдореЗрдВ рд╕реБрднрд╛рд╖рдЪрдВрджреНрд░ рдмреЛрд╕ рдХреА рдореВрд░реНрддрд┐ рдкрд░ рдЪрд╢реНрдорд╛ рдХреНрдпреЛрдВ рдирд╣реАрдВ рдерд╛? рдХрд┐рд╕рдХреА рдХрдореА рдХреЗ рдХрд╛рд░рдг рдЪрд╢реНрдорд╛ рдмрдирдиреЗ рд╕реЗ рд░рд╣ рдЧрдпрд╛ред рдлрд┐рд░ рдЙрдиреНрд╣реЗрдВ рдпрд╛рдж рдЖрддрд╛ рдерд╛ рдХрд┐ рдХрд╕реНрдмреЗ рд╡рд╛рд▓реЗ рдЬреИрд╕реЗ-рддреИрд╕реЗ рдХреЛрдИ-рди-рдХреЛрдИ рдЪрд╢реНрдорд╛ рдиреЗрддрд╛рдЬреА рдХреА рдореВрд░реНрддрд┐ рдкрд░ рд▓рдЧрд╛ рджреЗрддреЗ рд╣реИрдВред рдЙрдиреНрд╣реЗрдВ рдХрд╕реНрдмреЗ рд╡рд╛рд▓реЛрдВ рдХрд╛ рдпрд╣ рдкреНрд░рдпрд╛рд╕ рдкреНрд░рд╢рдВрд╕рдиреАрдп рд▓рдЧрддрд╛ рдерд╛ред рд╣рд╛рд▓рджрд╛рд░ рд╕рд╛рд╣рдм рднреА рджреЗрд╢рднрдХреНрдд рдереЗред рдиреЗрддрд╛рдЬреА рдХреЗ рдкреНрд░рддрд┐ рдЙрдирдХреЗ рдорди рдореЗрдВ рдЧрд╣рд░рд╛ рд╕рдореНрдорд╛рди рдерд╛ред рдЗрд╕рд▓рд┐рдП рд╡реЗ рдЖрддреЗ-рдЬрд╛рддреЗ рдЙрдирдХреА рдореВрд░реНрддрд┐ рдХреЗ рдмрд╛рд░реЗ рдореЗрдВ рд╕реЛрдЪрд╛ рдХрд░рддреЗ рдереЗред
(рдЧ) рдЧрд┐рд░рддреА рдЖрд░реНрдерд┐рдХ рджрд╢рд╛ рдиреЗ рдордиреНрдиреВ рднрдВрдбрд╛рд░реА рдХреЗ рдкрд┐рддрд╛ рдХреЗ рд╡реНрдпрдХреНрддрд┐рддреНрд╡ рдкрд░ рдмрд╣реБрдд рдЧрд╣рд░рд╛ рдкреНрд░рднрд╛рд╡ рдбрд╛рд▓рд╛ред рдЙрдиреНрд╣реЗрдВ рд╕рджрд╛ рд╢реАрд░реНрд╖ рдкрд░ рд░рд╣рдиреЗ рдХреА рдЖрджрдд рдереА, рдкрд░рдиреНрддреБ рдЧрд┐рд░рддреА рдЖрд░реНрдерд┐рдХ рджрд╢рд╛ рдиреЗ рдЙрдирдХреА рд╕реНрдерд┐рддрд┐ рдореЗрдВ рдмрд╣реБрдд рдкрд░рд┐рд╡рд░реНрддрди рд▓рд╛ рджрд┐рдпрд╛ рдерд╛ред рдЕрдВрдЧреНрд░реЗрдЬреА-рд╣рд┐рдиреНрджреА рд╢рдмреНрджрдХреЛрд╢ рдкреВрд░рд╛ рдХрд░рдиреЗ рдкрд░ рдЙрдиреНрд╣реЗрдВ рдпрд╢ рдФрд░ рдкреНрд░рддрд┐рд╖реНрдард╛ рддреЛ рдЦреВрдм рдорд┐рд▓реА, рдХрд┐рдиреНрддреБ рдзрди рдирд╣реАрдВред рдЗрд╕рд╕реЗ рдЙрдирдХреА рдЖрд░реНрдерд┐рдХ рд╕реНрдерд┐рддрд┐ рдкрд╣рд▓реЗ рд╕реЗ рдФрд░ рдмреБрд░реА рд╣реЛ рдЧрдИ рдереАред рдЗрд╕рд╕реЗ рдЙрдирдХреЗ рд╡реНрдпрдХреНрддрд┐рддреНрд╡ рдХреЗ рд╕рд╛рд░реЗ рд╕рдХрд╛рд░рд╛рддреНрдордХ рдкрд╣рд▓реВ рд╕рдорд╛рдкреНрдд рд╣реЛрддреЗ рдЪрд▓реЗ рдЧрдПред рдЗрд╕реА рдХрд╛рд░рдг рдЙрдиреНрд╣реЗрдВ рдЕрдкрдирд╛ рд╢рд╣рд░ рдЗрдВрджреМрд░ рднреА рдЫреЛрдбрд╝рдирд╛ рдкрдбрд╝рд╛ рдерд╛ред
(рдШ) рдмреБрд▓реНрдХреЗ рдЬрдм рдЗрдВрдЬреАрдирд┐рдпрд░рд┐рдВрдЧ рдХреЗ рдЕрдВрддрд┐рдо рд╡рд░реНрд╖ рдореЗрдВ рдереЗ, рддрдм рдЕрдЪрд╛рдирдХ рд╣реА рдЙрдиреНрд╣реЛрдВрдиреЗ рд╕рдВрдиреНрдпрд╛рд╕реА рдмрдирдиреЗ рдПрд╡рдВ рднрд╛рд░рдд рдЖрдиреЗ рдХрд╛ рдирд┐рд░реНрдгрдп рд▓рд┐рдпрд╛ред рднрд╛рд░рдд рдЖрдиреЗ рдХрд╛ рд╡рд┐рдЪрд╛рд░ рдЕрдЪрд╛рдирдХ рд╣реА рдмреБрд▓реНрдХреЗ рдХреЗ рдорди рдореЗрдВ рдирд╣реАрдВ рдЙрдард╛ рд╣реЛрдЧрд╛ред рд╢рд╛рдпрдж рдЙрдирдХреЗ рдЕрд╡рдЪреЗрддрди рдорди рдореЗрдВ рднрд╛рд░рддрднреВрдорд┐ рдФрд░ рднрд╛рд░рддреАрдп рд╕рдВрд╕реНрдХреГрддрд┐ рдХреЗ рдкреНрд░рддрд┐ рдкрд╣рд▓реЗ рд╕реЗ рд╣реА рдкреНрд░реЗрдо рдХреА рднрд╛рд╡рдирд╛ рд░рд╣реА рд╣реЛрдЧреА, рдЬреЛ рд╕рдВрдиреНрдпрд╛рд╕ рд▓реЗрдиреЗ рдХреЗ рд╕рдордп рдЙрднрд░рдХрд░ рд╕рд╛рдордиреЗ рдЖ рдЧрдИред

рдЙрддреНрддрд░ 9. (рдХ) рдХрд╡рд┐ рдмрд╛рджрд▓ рдХреЛ рдкреВрд░рд╛ рдЖрдХрд╛рд╢ рдШреЗрд░рдиреЗ рдХреЗ рд▓рд┐рдП рдХрд╣ рд░рд╣рд╛ рд╣реИред рдРрд╕рд╛ рдкреНрд░рддреАрдд рд╣реЛрддрд╛ рд╣реИ рдЬреИрд╕реЗ рдЖрдХрд╛рд╢ рдзрд░рддреА рдХрд╛ рд╕рдВрд░рдХреНрд╖рдХ рд╣реИред
(рдЦ) рдмрд╛рджрд▓ рдХрд╛ рд░реВрдк рдХрд╛рд▓рд╛, рдШрдирд╛ рдФрд░ рдлреИрд▓рд╛рд╡ рднрд░рд╛ рд╣реЛрддрд╛ рд╣реИред рдЙрдирдХрд╛ рд░реВрдк рдРрд╕рд╛ рд╣реЛрддрд╛ рд╣реИ рдорд╛рдиреЛ рдХрд┐рд╕реА рдмрдЪреНрдЪреЗ рдХреЗ рдХрд╛рд▓реЗ рдзреБрдВрдШрд░рд╛рд▓реЗ рд╕реБрдВрджрд░ рдХреЗрд╢ рд╣реЛрдВред рд░реВрдк, рд░рдВрдЧ рдФрд░ рдлреИрд▓рд╛рд╡ рдХреА рд╕рдорд╛рдирддрд╛ рдХреЗ рдХрд╛рд░рдг рдмрд╛рджрд▓реЛрдВ рдХреА рдХрд▓реНрдкрдирд╛ рд▓рд▓рд┐рдд рдХрд╛рд▓реЗ рд╣реБрдБрдШрд░рд╛рд▓реЗ рдмрд╛рд▓реЛрдВ рдХреЗ рд▓рд┐рдП рдХреА рдЧрдИ рд╣реИред
(рдЧ) рдХрд╡рд┐ рдмрд╛рджрд▓ рдХреЛ рдЧрд░рдЬрдиреЗ рдХреЗ рд▓рд┐рдП рдЗрд╕рд▓рд┐рдП рдХрд╣ рд░рд╣рд╛ рд╣реИ рдХреНрдпреЛрдВрдХрд┐ рд╡рд╣ рд╡рд╛рддрд╛рд╡рд░рдг рдореЗрдВ рдЬреЛрд╢, рдкреМрд░реБрд╖ рдФрд░ рдХреНрд░рд╛рдиреНрддрд┐ рдЪрд╛рд╣рддрд╛ рд╣реИред рдирд┐рд░рд╛рд▓рд╛ рдХреЛ рдмрд╛рджрд▓ рдХреА рдЧрдбрд╝рдЧрдбрд╝рд╛рд╣рдЯ рдмрд╣реБрдд рдкреНрд░рд┐рдп рд╣реИред

рдЙрддреНрддрд░ 10. (рдХ) рдХрд╡рд┐ рдиреЗ ‘рд╢реНрд░реАрдмреНрд░рдЬрджреВрд▓рд╣’ рдХрд╛ рдкреНрд░рдпреЛрдЧ рд╢реНрд░реАрдХреГрд╖реНрдг рдЬреА рдХреЗ рд▓рд┐рдП рдХрд┐рдпрд╛ рд╣реИред рдЬрд┐рд╕ рдкреНрд░рдХрд╛рд░ рджреАрдкрдХ рдордВрджрд┐рд░ рдХреЛ рдЕрдкрдиреА рдкрд╡рд┐рддреНрд░ рд▓реМ рд╕реЗ рдкреНрд░рдХрд╛рд╢рд┐рдд рдХрд░ рджреЗрддрд╛ рд╣реИ, рд╡реИрд╕реЗ рд╣реА рдЙрд╕рдХреА рдкрд╡рд┐рддреНрд░ рд▓реМ рднрдХреНрддреЛрдВ рдХреЗ рдЕрдВрджрд░ рд╢реНрд░рджреНрдзрд╛ рдХреА рднрд╛рд╡рдирд╛рдУрдВ рдХреЛ рдФрд░ рдЧрд╣рд░рд╛ рдХрд░рддреА рд╣реИ рдФрд░ рдЙрдиреНрд╣реЗрдВ рдкреНрд░реЗрд░рдгрд╛ рджреЗрддреА рд╣реИ, рдЙрд╕реА рдкреНрд░рдХрд╛рд░ рд╢реНрд░реАрдХреГрд╖реНрдг рдЕрдкрдиреЗ рддреЗрдЬ рд╕реЗ рд╕рдВрд╕рд╛рд░ рд░реВрдкреА рдордВрджрд┐рд░ рдХреЛ рдкреНрд░рдХрд╛рд╢рд┐рдд рдХрд░рддреЗ рд╣реИрдВ рддрдерд╛ рдЙрдирдХреЗ рдЬреНрдЮрд╛рди рддрдерд╛ рддреЗрдЬрд╕реНрд╡реА рд╡реНрдпрдХреНрддрд┐рддреНрд╡ рд╕реЗ рдкреНрд░реЗрд░рдгрд╛ рдПрд╡рдВ рдорд╛рд░реНрдЧрджрд░реНрд╢рди рдкрд╛рдХрд░ рд▓реЛрдЧ рдХрд░реНрдордкрде рдкрд░ рдЖрдЧреЗ рдмрдврд╝рддреЗ рд╣реИрдВред
(рдЦ) рдЧрд╛рдпрдХреЛрдВ рдХреЛ рдЧрд╛рдпрди рдХреЗ рджреМрд░рд╛рди рдЕрдиреЗрдХ рдХрдард┐рдирд╛рдЗрдпрд╛рдБ рдЖрддреА рд╣реИрдВред рдХрднреА-рдХрднреА рдКрдБрдЪрд╛ рд╕реНрд╡рд░ рдЙрдард╛рддреЗ рд╕рдордп рдЙрдирдХрд╛ рдЧрд▓рд╛ рдмреИрда рдЬрд╛рддрд╛ рд╣реИред рдХрднреА рдЧрд╛рдиреЗ рдХреА рд╢рдХреНрддрд┐ рд╕рдорд╛рдкреНрдд рд╣реЛ рдЬрд╛рддреА рд╣реИред рдХрднреА рдЙрддреНрд╕рд╛рд╣ рдордВрдж рдкрдбрд╝ рдЬрд╛рддрд╛ рд╣реИред рдХрднреА рд╕реНрд╡рд░ рдЯреВрдЯрдиреЗ рд▓рдЧрддрд╛ рд╣реИред рдХрднреА рдЖрд▓рд╛рдк рдХрд░рддреЗ-рдХрд░рддреЗ рдЧрд╛рдпрдХ рдорд╕реНрддреА рдореЗрдВ рдЗрддрдирд╛ рдЦреЛ рдЬрд╛рддрд╛ рд╣реИ рдХрд┐ рд╡рд╣ рдЧреАрдд рдХрд╛ рдореВрд▓ рд╕реНрд╡рд░ рднреВрд▓ рдЬрд╛рддрд╛ рд╣реИред рдЗрд╕ рдкреНрд░рдХрд╛рд░ рд╡рд╣ рднрдЯрдХ рдЬрд╛рддрд╛ рд╣реИред
(рдЧ) рд╣рдо рдЗрд╕ рдмрд╛рдд рд╕реЗ рдкреВрд░реНрдгрддрдГ рд╕рд╣рдордд рд╣реИрдВ рдХрд┐ рдмреЗрдЯреА рдЕрдкрдиреА рдорд╛рдБ рдХреЗ рд╕рдмрд╕реЗ рдирд┐рдХрдЯ рд╣реЛрддреА рд╣реИред рдмреЗрдЯреА рдорд╛рдБ рдХреЗ рд╕рд╛рде рд╕рдмрд╕реЗ рдЬреНрдпрд╛рджрд╛ рд╕рдордп рдмрд┐рддрд╛рддреА рд╣реИред рдмреЗрдЯреА рдХрд╛ рдорд╛рдБ рдХреЗ рд╕рд╛рде рдЕрдзрд┐рдХ рд▓рдЧрд╛рд╡ рд╣реЛрддрд╛ рд╣реИ рдФрд░ рдЙрд╕рдХреЗ рд╕реБрдЦ-рджреБрдГрдЦ рдХреЛ рднрд▓реА-рднрд╛рдБрддрд┐ рд╕рдордЭ рд╕рдХрддреА рд╣реИред рд╡рд╣ рдЕрдкрдиреА рдорд╛рдБ рдХреА рднрд╛рд╡рдирд╛рдУрдВ рдХрд╛ рд╕рдореНрдорд╛рди рдХрд░рдирд╛ рдЬрд╛рдирддреА рд╣реИред
(рдШ) тАЬрдлреБрд╣рд╛рд░’, ‘рд░рд┐рдордЭрд┐рдо’ рддрдерд╛ ‘рдмрд░рд╕рдирд╛’ рд╡рд╛рд╕реНрддрд╡ рдореЗрдВ рдХреЛрдорд▓рддрд╛ рд╡ рдореГрджреБрд▓ рд╕реЛрдЪ рдХреЗ рдкреНрд░рддреАрдХ рд╣реИрдВ, рдХрд┐рдиреНрддреБ рдЬрдм рдирд╡реАрди рдкрд░рд┐рд╡рд░реНрддрди рд▓рд╛рдирд╛ рд╣реЛ рддреЛ ‘рдЧрд░реНрдЬрди’ рдпрд╛рдиреА рд╡рд┐рджреНрд░реЛрд╣ рдФрд░ рдХреНрд░рд╛рдиреНрддрд┐ рдХреА рдЖрд╡рд╢реНрдпрдХрддрд╛ рд╣реЛрддреА рд╣реИред рдЗрд╕рд▓рд┐рдП рдХрд╡рд┐ рдмрд╛рджрд▓ рд╕реЗ рдлреБрд╣рд╛рд░, рд░рд┐рдордЭрд┐рдо рдпрд╛ рдмрд░рд╕рдиреЗ рдХреЗ рд╕реНрдерд╛рди рдкрд░ рдЧрд░рдЬрдиреЗ рдХреЗ рд▓рд┐рдП рдХрд╣ рд░рд╣рд╛ рд╣реИ рдХреНрдпреЛрдВрдХрд┐ рдХрд╡рд┐ рдХрд╛ рдорд╛рдирдирд╛ рд╣реИ рдХрд┐ рдирд╡реАрдирддрд╛ рд▓рд╛рдиреЗ рдХреЗ рд▓рд┐рдП рд╡рд┐рдзреНрд╡рдВрд╕, рд╡рд┐рдкреНрд▓рд╡ рдФрд░ рдХреНрд░рд╛рдиреНрддрд┐ рдЖрд╡рд╢реНрдпрдХ рд╣реИрдВред рдХрд╡рд┐
рдиреЗ рдмрд╛рджрд▓ рд╕реЗ рдЧрд░рдЬрдиреЗ рдХрд╛ рдЖрд╣реНрд╡рд╛рди рдХрд░рдХреЗ рдПрдХ рдкреНрд░рдХрд╛рд░ рд╕реЗ рдХрд╡рд┐рддрд╛ рджреНрд╡рд╛рд░рд╛ рдиреВрддрди рд╡рд┐рджреНрд░реЛрд╣ рдХрд╛ рдЖрд╣реНрд╡рд╛рди рдХрд┐рдпрд╛ рд╣реИред

рдЙрддреНрддрд░ 11. рдкрд╣рд╛рдбрд╝реЛрдВ рдкрд░ рдкреБрд░реБрд╖реЛрдВ рдХреА рдЕрдкреЗрдХреНрд╖рд╛ рд╕реНрддреНрд░рд┐рдпреЛрдВ рдХрд╛ рдЬреАрд╡рди рдЕрдзрд┐рдХ рдХрдард┐рдирд╛рдЗрдпреЛрдВ рд╕реЗ рднрд░рд╛ рд╣реЛрддрд╛ рд╣реИ, рдХреНрдпреЛрдВрдХрд┐ рдШрд░реЗрд▓реВ рдЬрд┐рдореНрдореЗрджрд╛рд░рд┐рдпреЛрдВ рдХрд╛ рднрд╛рд░ рд╕реНрддреНрд░рд┐рдпреЛрдВ рдХреЛ рд╣реА рд╡рд╣рди рдХрд░рдирд╛ рдкрдбрд╝рддрд╛ рд╣реИред рдШрд░ рдХреЗ рд╕рднреА рд╕рджрд╕реНрдпреЛрдВ рдХреЗ рд▓рд┐рдП рдкреАрдиреЗ рдХреЗ рдкрд╛рдиреА рдХрд╛ рдкреНрд░рдмрдВрдз рдХрд░рдирд╛, рдЦрд╛рдирд╛ рдмрдирд╛рдиреЗ рдХреЗ рд▓рд┐рдП рдИрдВрдзрди рдЗрдХрдЯреНрдард╛ рдХрд░рдирд╛, рдорд╡реЗрд╢рд┐рдпреЛрдВ рдХреЛ рдЪрд░рд╛рдирд╛ рдЖрджрд┐ рдХрд╛рдо рд╕реНрддреНрд░рд┐рдпреЛрдВ рдХреЛ рд╣реА рдХрд░рдиреЗ рдкрдбрд╝рддреЗ рд╣реИрдВред рдЗрд╕рдХреЗ рд▓рд┐рдП рдЙрдиреНрд╣реЗрдВ рдХрд╛рдлреА рдкрд░рд┐рд╢реНрд░рдо рдХрд░рдирд╛ рдкрдбрд╝рддрд╛ рд╣реИред рдЕрдкрдиреЗ рдкрд░рд┐рд╡рд╛рд░ рдХреА рдЖрд░реНрдерд┐рдХ рдорджрдж рдХреЗ рд▓рд┐рдП рд╡реЗ рд╕рдбрд╝рдХреЗрдВ рдмрдирд╛рдиреЗ рдЬреИрд╕рд╛ рджреБрд╕реНрд╕рд╛рдзреНрдп рдХрд╛рд░реНрдп рднреА рдХрд░рддреА рд╣реИрдВред

рдЗрди рд╕рднреА рдХрд╛рдореЛрдВ рдХреЗ рд╕рд╛рде-рд╕рд╛рде рдЙрдирдХреА рдорд╛рддреГрддреНрд╡ рд╕рд╛рдзрдирд╛ рднреА рдЪрд▓рддреА рд░рд╣рддреА рд╣реИ, рд╣рдорд╛рд░реЗ рд╕рдорд╛рдЬ рдореЗрдВ рдмрдЪреНрдЪреЛрдВ рдХреЗ рдкрд╛рд▓рди-рдкреЛрд╖рдг рдХреА рдкреНрд░рд╛рдердорд┐рдХ рдЬрд┐рдореНрдореЗрджрд╛рд░реА рд╕реНрддреНрд░рд┐рдпреЛрдВ рдХреЛ рд╣реА рдирд┐рднрд╛рдиреА рдкрдбрд╝рддреА рд╣реИред рдЙрдиреНрд╣реЗрдВ рдкрддреНрдерд░ рддреЛрдбрд╝рдиреЗ рдФрд░ рд╕рдбрд╝рдХ рдмрдирд╛рдиреЗ рдЬреИрд╕реЗ рдЦрддрд░рдирд╛рдХ рдХрд╛рдореЛрдВ рдХреЛ рдХрд░рддреЗ рд╕рдордп рдЕрдкрдиреЗ рдмрдЪреНрдЪреЛрдВ рдХреЛ рднреА рдкреАрда рдкрд░ рдмрд╛рдБрдзрдХрд░ рд╕рдБрднрд╛рд▓рдирд╛ рдкрдбрд╝рддрд╛ рд╣реИред рд╡реЗ рдЗрди рд╕рднреА рдХрдард┐рдирд╛рдЗрдпреЛрдВ рдХрд╛ рдирд┐рд╡рд╛рд░рдг рдЕрддреНрдпрдВрдд рдХрд░реНрддрд╡реНрдпрдкреНрд░рд┐рдпрддрд╛ рд╕реЗ рдХрд░рддреА рд╣реИрдВред рднреВрдЦ, рдореМрдд, рджреИрдиреНрдп рдФрд░ рдЬрд┐рдВрджрд╛ рд░рд╣рдиреЗ рдХреА рдЬрдВрдЧ рдореЗрдВ рднреА рд╡реЗ рдореБрд╕реНрдХреБрд░рд╛рддреА рд░рд╣рддреА рд╣реИрдВ рдФрд░ рдЕрдкрдиреЗ рдХрд░реНрддрд╡реНрдпреЛрдВ рдХрд╛ рд╕рд╣рдЬ рднрд╛рд╡ рд╕реЗ рдкрд╛рд▓рди рдХрд░рддреА рд░рд╣рддреА рд╣реИрдВред рдЗрд╕ рдкреНрд░рдХрд╛рд░ рдХреА рдЬреАрд╡рди-рд╢реИрд▓реА рдХреЛ рдЙрдиреНрд╣реЛрдВрдиреЗ рд╕реНрд╡рд╛рднрд╛рд╡рд┐рдХ рддрдерд╛ рд╕рд╣рдЬ рд░реВрдк рд╕реЗ рдЕрдкрдирд╛ рд▓рд┐рдпрд╛ рд╣реИред

рдЕрдерд╡рд╛

рдпрд╣ рдмрд╛рдд рдкреВрд░реНрдгрдд: рд╕рддреНрдп рд╣реИ рдХрд┐ рдЬрдм рд▓рдбрд╝рдХреЗ рдЦреЗрд▓ рдЦреЗрд▓рддреЗ рд╣реИрдВ, рддреЛ рдХрдИ рдмрд╛рд░ рд╡реЗ рдРрд╕реЗ рдЦреЗрд▓ рднреА рдЦреЗрд▓рдиреЗ рд▓рдЧрддреЗ рд╣реИрдВ, рдЬрд┐рд╕рд╕реЗ рдмреЗрд╡рдЬрд╣ рдорд╛рд╕реВрдо рдкрдХреНрд╖рд┐рдпреЛрдВ рдФрд░ рдкрд╢реБрдУрдВ рдХреЛ рдХрд╖реНрдЯ рд╣реЛрддрд╛ рд╣реИред рдХрдИ рдмрд╛рд░ рддреЛ рдкрдХреНрд╖рд┐рдпреЛрдВ, рддрд┐рддрд▓рд┐рдпреЛрдВ, рдЪрдЯрд┐рдпреЛрдВ рдЖрджрд┐ рдХреЛ рдЕрдкрдиреА рдЬрд╛рди рд╕реЗ рд╣рд╛рде рдзреЛрдирд╛ рдкрдбрд╝рддрд╛ рд╣реИред рдЗрд╕реА рдкреНрд░рдХрд╛рд░ рдмрдЪреНрдЪреЗ рдЧрд▓реА рдореЗрдВ рдЦреЗрд▓рддреЗ рд╣реБрдП рдХреБрддреНрддреЛрдВ, рдЧрдзреЛрдВ рдЖрджрд┐ рдХреЛ рдмрд╣реБрдд рддрдВрдЧ рдХрд░рддреЗ рд╣реИрдВ, рдЬрд┐рд╕рд╕реЗ рдХрдИ рдмрд╛рд░ рдЗрди рдкрд╢реБрдУрдВ рдХреЛ рдЪреЛрдЯ рднреА рд▓рдЧ рдЬрд╛рддреА рд╣реИред

рдЗрд╕реА рдкреНрд░рдХрд╛рд░ рдмрдВрджрд░ рдХрд┐рд╕реА рдХрд╛ рднреА рдХреАрдорддреА рд╕рд╛рдорд╛рди рдЙрдард╛рдХрд░ рд▓реЗ рдЬрд╛рддреЗ рд╣реИрдВ рддрдерд╛ рддреЛрдбрд╝-рдлреЛрдбрд╝ рджреЗрддреЗ рд╣реИрдВ, рд╡реЗ рдирд╣реАрдВ рдЬрд╛рдирддреЗ рдХрд┐ рдпреЗ рдХрд┐рд╕реА рдХреЗ рд▓рд┐рдП рдХрд┐рддрдирд╛ рдЖрд╡рд╢реНрдпрдХ рд╣реИред рдореЗрд░реЗ рд╡рд┐рдЪрд╛рд░ рд╕реЗ рдРрд╕рд╛ рдХрд░рдирд╛ рдХрд┐рд╕реА рднреА рджреГрд╖реНрдЯрд┐ рд╕реЗ рдЙрдЪрд┐рдд рдирд╣реАрдВ рд╣реИ, рдХреНрдпреЛрдВрдХрд┐ рдкрд╢реБ-рдкрдХреНрд╖рд┐рдпреЛрдВ рдХреЛ рд╕рддрд╛рдирд╛, рддрдВрдЧ рдХрд░рдирд╛ рдФрд░ рджреБ:рдЦ рджреЗрдирд╛ рдХрд┐рд╕реА рднреА рджреГрд╖реНрдЯрд┐ рд╕реЗ рд╕рд╣реА рдирд╣реАрдВ рдХрд╣рд╛ рдЬрд╛ рд╕рдХрддрд╛ рд╣реИред рдРрд╕реЗ рдкрд╢реБ-рдкрдХреНрд╖рд┐рдпреЛрдВ рдХреЛ рддрдВрдЧ рдХрд░рдирд╛, рдЬреЛ рдмрдЪреНрдЪреЛрдВ рдХреЛ рддрдВрдЧ рднреА рдирд╣реАрдВ рдХрд░рддреЗ, рдкреВрд░реА рддрд░рд╣ рдЕрдиреБрдЪрд┐рдд рд╣реИред

рдЦрдгреНрдб (рдШ)

рдЙрддреНрддрд░ 12. (рдХ) рдиреЛрдЯрдмрдВрджреА : рд░рд╛рд╖реНрдЯреНрд░рд╣рд┐рдд рдХреА рдУрд░ рдПрдХ рдмрдбрд╝рд╛ рдХрджрдо

рдиреЛрдЯрдмрдВрджреА рдХреА рдШреЛрд╖рдгрд╛-рдиреЛрдЯрдмрдВрджреА рдХрд╛рд▓реЗрдзрди рдкрд░ рдХрд░рд╛рд░рд╛ рд╡рд╛рд░ рд╕рд┐рджреНрдз рд╣реБрдЖ рдФрд░ рдзреАрд░реЗ-рдзреАрд░реЗ рдХрд╛рд▓рд╛рдзрди рдмрд╛рд╣рд░ рдЖрдиреЗ рд▓рдЧрд╛ред рдиреЛрдЯрдмрдВрджреА рдХрд╛рд▓реЗ рдзрди рд╕реЗ рджреЗрд╢ рдХреЛ рдореБрдХреНрддрд┐ рджрд┐рд▓рд╛рдиреЗ рдХреЗ рд▓рд┐рдП рджреЗрд╢рд╣рд┐рдд рдореЗрдВ рд╕рд░рдХрд╛рд░ рджреНрд╡рд╛рд░рд╛ рдЙрдард╛рдпрд╛ рдЧрдпрд╛ рдПрдХ рдмрдбрд╝рд╛ рдХрджрдо рдерд╛ред рдЗрд╕ рдШреЛрд╖рдгрд╛ рдХреЗ рддрд╣рдд рд╕рд░рдХрд╛рд░ рдиреЗ рдкрд╛рдБрдЪ рд╕реМ рд╡ рдПрдХ рд╣рдЬрд╛рд░ рдХреЗ рдиреЛрдЯреЛрдВ рдХреЛ рдмрдВрдж рдХрд░рдХреЗ рдкрд╛рдБрдЪ рд╕реМ рддрдерд╛ рджреЛ рд╣рдЬрд╛рд░ рдХреЗ рдирдП рдиреЛрдЯ рдЫрд╛рдкрдиреЗ рдХрд╛ рдирд┐рд░реНрдгрдп рд▓рд┐рдпрд╛ред рдиреЛрдЯрдмрдВрджреА рдХреА рдШреЛрд╖рдгрд╛ рд╕реЗ рдХрд╛рд▓рд╛ рдзрди рд▓рд┐рдП рдмреИрдареЗ рд▓реЛрдЧреЛрдВ рдХреА рд╣рд╡рд╛рдЗрдпрд╛рдБ рдЙрдбрд╝ рдЧрдИрдВ рдФрд░ рд╕рд╛рде рд╣реА рдЖрдо рдЖрджрдореА рдХреЛ рднреА рдереЛрдбрд╝реА рджрд┐рдХреНрдХрддреЛрдВ рдХрд╛ рд╕рд╛рдордирд╛ рдХрд░рдирд╛ рдкрдбрд╝рд╛, рдХрд┐рдиреНрддреБ рддрдорд╛рдо рдкрд░реЗрд╢рд╛рдирд┐рдпреЛрдВ рдХреЗ рдмрд╛рд╡рдЬреВрдж рдЗрд╕ рдРрддрд┐рд╣рд╛рд╕рд┐рдХ рдирд┐рд░реНрдгрдп рдХреЛ рджреЗрд╢ рдХреА рдЬрдирддрд╛ рдХрд╛ рдЬрдмрд░рджрд╕реНрдд рд╕рдорд░реНрдерди рдорд┐рд▓рд╛ рдХреНрдпреЛрдВрдХрд┐ рдЬрдирддрд╛ рдЬрд╛рдирддреА рдереА рдХрд┐ рджреЗрд╢ рдХреЛ рдХрд╛рд▓реЗрдзрди рд╕реЗ рдореБрдХреНрддрд┐ рджрд┐рд▓рд╛рдиреЗ рдХреЗ рд▓рд┐рдП рдпреЗ рдкрд░реЗрд╢рд╛рдирд┐рдпрд╛рдБ рдЭреЗрд▓реА рдЬрд╛ рд╕рдХрддреА рд╣реИрдВред

рдХрд╛рд▓реЗ рдзрди рдкрд░ рд╡рд╛рд░-рд╡рд┐рдореБрджреНрд░реАрдХрд░рдг рдХрд╛ рд╕рд╣реА рддрд╛рддреНрдкрд░реНрдп рдпрд╣ рд╣реИ рдХрд┐ рдЬрдм рдХрд┐рд╕реА рджреЗрд╢ рдХрд┐ рд╕рд░рдХрд╛рд░ рдЕрдкрдиреА рдкреБрд░рд╛рдиреА рдореБрджреНрд░рд╛ рдХреЛ рдХрд╛рдиреВрдиреА рд░реВрдк рд╕реЗ рдмрдВрдж рдХрд░ рджреЗрддреА рд╣реИ рддреЛ рдЗрд╕ рдкреНрд░рдХреНрд░рд┐рдпрд╛ рдХреЛ рд╡рд┐рдореБрджреНрд░реАрдХрд░рдг (Demonetization) рдХрд╣рддреЗ рд╣реИрдВред 8 рдирд╡рдореНрдмрд░, 2016 рдХреЛ рдкреНрд░рдзрд╛рдирдордВрддреНрд░реА рд╢реНрд░реА рдирд░реЗрдиреНрджреНрд░ рдореЛрджреА рдЬреА рдиреЗ рднрд╛рд░рдд рдореЗрдВ 500 рд╡ 1000 рдХреЗ рдиреЛрдЯреЛрдВ рдХреЛ рдЕрдЪрд╛рдирдХ рдмрдВрдж рдХрд░рдиреЗ рдХреА рдШреЛрд╖рдгрд╛ рдХреАред рдХрд╛рд▓реЗрдзрди рдХрд╛ рдЙрдкрдпреЛрдЧ рдЖрддрдВрдХрд╡рд╛рдж, рдЕрдкрд░рд╛рдз рдФрд░ рддрд╕реНрдХрд░реА рдЬреИрд╕реЗ рдЖрдкрд░рд╛рдзрд┐рдХ рдХрд╛рд░реНрдпреЛрдВ рдореЗрдВ рднреА рдмрдбрд╝реЗ рдкреИрдорд╛рдиреЗ рдкрд░ рдирдЧрдж рд▓реЗрди-рджреЗрди рдХреЗ рд░реВрдк рдореЗрдВ рд╣реЛрддрд╛ рд╣реИред

рдЕрд▓рдЧрд╛рд╡рд╡рд╛рджрд┐рдпреЛрдВ, рдЖрддрдВрдХрд╡рд╛рджрд┐рдпреЛрдВ рдореЗрдВ рдирдХреНрд╕рд▓рд┐рдпреЛрдВ рдХреЛ рдХрд╛рд▓реЗ рдзрди рд╕реЗ рдорд┐рд▓рдиреЗ рд╡рд╛рд▓реА рдлрдВрдбрд┐рдВрдЧ рдмрдВрдж рд╣реЛрдиреЗ рд╕реЗ рдЙрдирдХреА рдХрдорд░ рдЯреВрдЯрдиреЗ рд▓рдЧреА рд╣реИ рдФрд░ рдЙрдирдХреА рдХреНрд░реВрд░ рдпреЛрдЬрдирд╛рдУрдВ рдкрд░ рд░реЛрдХ рд▓рдЧрд╛рдирд╛ рд╕рдВрднрд╡ рд╣реЛ рд╕рдХрд╛ рд╣реИред

рд░рд╛рд╖реНрдЯреНрд░рд╣рд┐рдд рдХреЗ рд▓рд┐рдпреЗ рджреЗрд╢ рдХреА рдЬрдирддрд╛ рдХрд╛ рдЬрдмрд░рджрд╕реНрдд рд╕рдорд░реНрдерди-рдХреБрдЫ рд╡рд┐рдкрдХреНрд╖реА рдиреЗрддрд╛рдУрдВ рдиреЗ рдРрд╕реЗ рд╕рд╛рд╣рд╕ рднрд░реЗ рдХрджрдо рдХреА рдЖрд▓реЛрдЪрдирд╛ рднреА рдХреА, рдХрд┐рдиреНрддреБ рджреЗрд╢ рдХреА рдЬрдирддрд╛ рдиреЗ рдЙрдирдХреЗ рдХрдердиреЛрдВ рдкрд░ рдзреНрдпрд╛рди рди рджреЗрдХрд░ рдЗрд╕ рдХрджрдо рдХрд╛ рд╡реНрдпрд╛рдкрдХ рд╕реНрддрд░ рдкрд░ рд╕рдорд░реНрдерди рдХрд┐рдпрд╛ред рдЗрд╕ рдХрджрдо рдХреЗ рдирддреАрдЬреЗ рджреЗрд╢ рдореЗрдВ рджрд┐рдЦрд╛рдИ рджреЗрдиреЗ рд▓рдЧреЗ рд╣реИрдВред рдЕрдд: рдирд┐рд╖реНрдХрд░реНрд╖ рд░реВрдк рдореЗрдВ рдХрд╣рд╛ рдЬрд╛ рд╕рдХрддрд╛ рд╣реИ рдХрд┐ рдиреЛрдЯрдмрдВрджреА рдХреА рдШреЛрд╖рдгрд╛ рд╕рд░рдХрд╛рд░ рджреНрд╡рд╛рд░рд╛ рджреЗрд╢рд╣рд┐рдд рдореЗрдВ рд▓рд┐рдпрд╛ рдЧрдпрд╛ рдПрдХ рдЙрдЪрд┐рдд рдирд┐рд░реНрдгрдп рдерд╛ред

(рдЦ) рд╕рдорд╛рдЪрд╛рд░-рдкрддреНрд░реЛрдВ рдХреА рдЙрдкрдпреЛрдЧрд┐рддрд╛

рднреВрдорд┐рдХрд╛-рд╕рдорд╛рдЪрд╛рд░-рдкрддреНрд░ рдЬрдирд╕рдВрдЪрд╛рд░ рдХрд╛ рдПрдХ рд╕рд╢рдХреНрдд рддрдерд╛ рдкреНрд░рднрд╛рд╡рд╢рд╛рд▓реА рдорд╛рдзреНрдпрдо рд╣реИред рдпрджреНрдпрдкрд┐ рдЖрдЬ рдХрд╛ рдпреБрдЧ рдкреНрд░реМрджреНрдпреЛрдЧрд┐рдХреА рдФрд░ рд╕рдВрдЪрд╛рд░ рдХреНрд░рд╛рдВрддрд┐ рдХрд╛ рдпреБрдЧ рд╣реИ, рдЬрд┐рд╕рдореЗрдВ рдЯреЗрд▓реАрд╡рд┐рдЬрди, рдЗрдВрдЯрд░рдиреЗрдЯ рдЬреИрд╕реЗ рдирд╡реАрди рдЬрдирд╕рдВрдЪрд╛рд░ рдорд╛рдзреНрдпрдо рднреА рдЙрдкрд▓рдмреНрдз рд╣реИрдВ, рд▓реЗрдХрд┐рди рд╕рдорд╛рдЪрд╛рд░-рдкрддреНрд░реЛрдВ рдХреА рдЙрдкрдпреЛрдЧрд┐рддрд╛ рддрдерд╛ рд╕рд╛рд░реНрдердХрддрд╛ рдЬреНрдпреЛрдВ-рдХреА-рддреНрдпреЛрдВ рд╣реА рдмрдиреА рд╣реБрдИ рд╣реИред рдЗрдирдХреА рдирд┐рд╖реНрдкрдХреНрд╖рддрд╛, рдирд┐рд░реНрднреАрдХрддрд╛, рдкреНрд░рд╛рдорд╛рдгрд┐рдХрддрд╛ рддрдерд╛ рд╡рд┐рд╢реНрд╡рд╕рдиреАрдпрддрд╛ рдореЗрдВ рд▓рдЧрд╛рддрд╛рд░ рд╡реГрджреНрдзрд┐ рд╣реЛ рд░рд╣реА рд╣реИред

рдЖрд░рдореНрдн рдПрд╡рдВ рдкреНрд░рд╕рд╛рд░-рд╕рдорд╛рдЪрд╛рд░-рдкрддреНрд░реЛрдВ рдХрд╛ рдЙрджреНрднрд╡ рд╕реЛрд▓рд╣рд╡реАрдВ рд╢рддрд╛рдмреНрджреА рдореЗрдВ рдкреНрд░рд┐рдВрдЯрд┐рдВрдЧ рдкреНрд░реЗрд╕ рдХреЗ рдЖрд╡рд┐рд╖реНрдХрд╛рд░ рдХреЗ рд╕рд╛рде рд╣реА рд╣реЛ рдЧрдпрд╛ рдерд╛, рдкрд░рдиреНрддреБ рдЗрдирдХрд╛ рд╡рд┐рдХрд╛рд╕ рдЕрдард╛рд░рд╣рд╡реАрдВ рд╢рддрд╛рдмреНрджреА рдореЗрдВ рд╣реА рд░рдлреНрддрд╛рд░ рдкрдХрдбрд╝ рдкрд╛рдпрд╛ред рднрд╛рд░рдд рдореЗрдВ рд╕рдорд╛рдЪрд╛рд░-рдкрддреНрд░реЛрдВ рдХреА рд╢реБрд░реБрдЖрдд ‘рдмрдВрдЧрд╛рд▓ рдЧрдЬрдЯ’ рдХреЗ рдкреНрд░рдХрд╛рд╢рди рдХреЗ рд╕рд╛рде рд╣реБрдИ рдереАред 1780 рдИ. рдореЗрдВ рдЬреЗрдореНрд╕ рдСрдЧрд╕реНрдЯрд╕ рд╣рд┐рдХреА рджреНрд╡рд╛рд░рд╛ рдЕрдВрдЧреНрд░реЗрдЬреА рднрд╛рд╖рд╛ рдореЗрдВ рд╕рдорд╛рдЪрд╛рд░-рдкрддреНрд░ рдкреНрд░рдХрд╛рд╢рд┐рдд рдХрд┐рдпрд╛ рдЧрдпрд╛ рдерд╛ред рд╣рд┐рдиреНрджреА рдХрд╛ рдкрд╣рд▓рд╛ рд╕рдорд╛рдЪрд╛рд░-рдкрддреНрд░ ‘рдЙрджрдВрдд рдорд╛рд░реНрддрдВрдб’ рдерд╛ред рдЗрд╕ рд╕рдордп рднрд╛рд░рдд рдореЗрдВ рдХрдИ рднрд╛рд╖рд╛рдУрдВ рдореЗрдВ рд▓рдЧрднрдЧ рддреАрд╕ рд╣рдЬрд╛рд░ рд╕реЗ рднреА рдЕрдзрд┐рдХ рддреНрд░реИрдорд╛рд╕рд┐рдХ, рдорд╛рд╕рд┐рдХ, рдкрд╛рдХреНрд╖рд┐рдХ рддрдерд╛ рджреИрдирд┐рдХ рд╕рдорд╛рдЪрд╛рд░-рдкрддреНрд░ рдкреНрд░рдХрд╛рд╢рд┐рдд рд╣реЛ рд░рд╣реЗ рд╣реИрдВ, рдЗрдирдореЗрдВ ‘рдж рдЯрд╛рдЗрдореНрд╕ рдСрдл рдЗрдВрдбрд┐рдпрд╛’, ‘рдж рд╣рд┐рдВрджреВ’, ‘рдирд╡рднрд╛рд░рдд рдЯрд╛рдЗрдореНрд╕’, ‘рджреИрдирд┐рдХ рдЬрд╛рдЧрд░рдг’, ‘рдЬрдирд╕рддреНрддрд╛’, ‘рд╣рд┐рдиреНрджреБрд╕реНрддрд╛рди рдЯрд╛рдЗрдореНрд╕’ рдЖрджрд┐ рдкреНрд░рдореБрдЦ рд╣реИрдВред

рдорд╣рддреНрд╡ рдПрд╡рдВ рдЙрдкрдпреЛрдЧрд┐рддрд╛- рднрд╛рд░рддрд╡рд░реНрд╖ рдореЗрдВ рд╕реНрд╡рддрдВрддреНрд░рддрд╛ рд╕рдВрдЧреНрд░рд╛рдо рдХреЗ рд╕рдордп рд╕реЗ рд╣реА рд╕рдорд╛рдЪрд╛рд░-рдкрддреНрд░реЛрдВ рдХреА рдорд╣рддреНрддрд╛ рддрдерд╛ рдЙрдкрдпреЛрдЧрд┐рддрд╛ рдмрдиреА рд╣реБрдИ рд╣реИред рджреЗрд╢ рдХреЗ рдкреНрд░рд╕рд┐рджреНрдз рдиреЗрддрд╛рдУрдВ рдиреЗ рднрд╛рд░рддреАрдп рдЬрдирддрд╛ рдореЗрдВ рджреЗрд╢рдкреНрд░реЗрдо рдХреА рднрд╛рд╡рдирд╛ рдЬрдЧрд╛рдиреЗ рдХреЗ рд▓рд┐рдП рд╕рдорд╛рдЪрд╛рд░-рдкрддреНрд░реЛрдВ рдХреЛ рд╣реА рдорд╛рдзреНрдпрдо рдмрдирд╛рдпрд╛ рдерд╛ред рд╡рд░реНрддрдорд╛рди рд╕рдордп рдореЗрдВ рдЗрдирдХреА рдорд╣рддреНрд╡рдкреВрд░реНрдг рднреВрдорд┐рдХрд╛ рдХреЛ рджреЗрдЦрддреЗ рд╣реБрдП рдЗрд╕реЗ ‘рд▓реЛрдХрддрдВрддреНрд░ рдХрд╛ рдЪреМрдерд╛ рд╕реНрддрдВрдн’ рдирд╛рдо рд╕реЗ рдЕрд▓рдВрдХреГрдд рдХрд┐рдпрд╛ рдЧрдпрд╛ рд╣реИред рд╕рдорд╛рдЪрд╛рд░-рдкрддреНрд░реЛрдВ рдХреЛ рд▓реЛрдХрдордд рдирд┐рд░реНрдорд╛рдг, рд╕реВрдЪрдирд╛рдУрдВ рдХрд╛ рдкреНрд░рд╕рд╛рд░, рднреНрд░рд╖реНрдЯрд╛рдЪрд╛рд░ рдПрд╡рдВ рдШреЛрдЯрд╛рд▓реЛрдВ рдХрд╛ рдкрд░реНрджрд╛рдлрд╛рд╢ рддрдерд╛ рд╕рдорд╛рдЬ рдХреА рд╕рдЪреНрдЪреА рддрд╕реНрд╡реАрд░ рдкреНрд░рд╕реНрддреБрдд рдХрд░рдиреЗ рдХреЗ рд▓рд┐рдП рдЬрд╛рдирд╛ рдЬрд╛рддрд╛ рд╣реИред рджреЗрд╢ рдХреЗ рдкреНрд░рдердо рдирд╛рдЧрд░рд┐рдХ рд╕реЗ рд▓реЗрдХрд░ рдПрдХ рдЖрдо рдЖрджрдореА рддрдХ рдЗрдирдХреА рдкрд╣реБрдБрдЪ рд╣реИ, рдХреНрдпреЛрдВрдХрд┐ рд╕рдорд╛рдЪрд╛рд░-рдкрддреНрд░ рдЬрдирд╕рдВрдЪрд╛рд░ рдХрд╛ рд╕рдмрд╕реЗ рд╕рд╕реНрддрд╛, рдкрд░рдиреНрддреБ рд╡рд┐рд╢реНрд╡рд╕рдиреАрдп рдорд╛рдзреНрдпрдо рд╣реИред рд╕рдорд╛рдЪрд╛рд░-рдкрддреНрд░ рд╕рд░рдХрд╛рд░ рдПрд╡рдВ рдЬрдирддрд╛ рдХреЗ рдмреАрдЪ рдПрдХ рд╕реЗрддреБ рдХрд╛ рдХрд╛рд░реНрдп рдХрд░рддреЗ рд╣реИрдВред

рд╕рд╛рдорд╛рдЬрд┐рдХ рдкрд░рд┐рд╡рд░реНрддрди рдореЗрдВ рд╕рдорд╛рдЪрд╛рд░-рдкрддреНрд░реЛрдВ рдХреА рднреВрдорд┐рдХрд╛-рд╕рдордп рдХреЗ рд╕рд╛рде-рд╕рд╛рде рд╕рдорд╛рдЪрд╛рд░-рдкрддреНрд░реЛрдВ рдХрд╛ рдХрд╛рд░реНрдпрдХреНрд╖реЗрддреНрд░ рднреА рдмрдврд╝ рдЧрдпрд╛ рд╣реИред рдЕрдм рдЗрдирдХрд╛ рдореБрдЦреНрдп рдЙрджреНрджреЗрд╢реНрдп рдХреЗрд╡рд▓ рд╕реВрдЪрдирд╛рдПрдБ рдЙрдкрд▓рдмреНрдз рдХрд░рд╡рд╛рдирд╛ рд╣реА рдирд╣реАрдВ рд╣реИ, рдмрд▓реНрдХрд┐ рд╕рд╛рдорд╛рдЬрд┐рдХ рдкрд░рд┐рд╡рд░реНрддрди рдореЗрдВ рдЗрдирдХреА рднреВрдорд┐рдХрд╛ рдЙрд▓реНрд▓реЗрдЦрдиреАрдп рд╣реЛ рдЧрдИ рд╣реИред рдпрд╣рд╛рдБ рддрдХ рдХрд┐ рдХрднреА-рдХрднреА рд╕рд░рдХрд╛рд░ рдХреЛ рдЧрд┐рд░рд╛рдиреЗ рдореЗрдВ рднреА рдпреЗ рд╕рдлрд▓ рд░рд╣рддреЗ рд╣реИрдВред рдЗрд╕реАрд▓рд┐рдП рдПрдХ рдХрд╡рд┐ рдиреЗ рдХрд╣рд╛ рд╣реИ
“рдЭреБрдХ рдЬрд╛рддреА рд╣реИ рддрд▓рд╡рд╛рд░ рднреА рдЕрдЦрдмрд╛рд░ рдХреЗ рдЖрдЧреЗ,
рдЭреБрдХ рдЬрд╛рддреА рд╣реИ рд╕рд░рдХрд╛рд░ рднреА рдЕрдЦрдмрд╛рд░ рдХреЗ рдЖрдЧреЗред”

рдЙрдкрд╕рдВрд╣рд╛рд░-рдХрд┐рд╕реА рднреА рджреЗрд╢ рдореЗрдВ рдЬрдирддрд╛ рдХрд╛ рдорд╛рд░реНрдЧрджрд░реНрд╢рди рдХрд░рдиреЗ рдХреЗ рд▓рд┐рдП рдирд┐рд╖реНрдкрдХреНрд╖ рддрдерд╛ рдирд┐рд░реНрднреАрдХ рд╕рдорд╛рдЪрд╛рд░-рдкрддреНрд░реЛрдВ рдХрд╛ рд╣реЛрдирд╛ рдЖрд╡рд╢реНрдпрдХ рд╣реИред рд╕рдорд╛рдЪрд╛рд░-рджреЗрд╢ рдХреА рд░рд╛рдЬрдиреАрддрд┐рдХ, рд╕рд╛рдорд╛рдЬрд┐рдХ, рдЖрд░реНрдерд┐рдХ рдПрд╡рдВ рд╕рд╛рдВрд╕реНрдХреГрддрд┐рдХ рдЧрддрд┐рд╡рд┐рдзрд┐рдпреЛрдВ рдХреА рд╕рдЪреНрдЪреА рддрд╕реНрд╡реАрд░ рдкреНрд░рд╕реНрддреБрдд рдХрд░рддреЗ рд╣реИрдВред рд╕рдорд╛рдЪрд╛рд░-рдкрддреНрд░реЛрдВ рдХреЛ рд╕рд╛рдорд╛рдЬрд┐рдХ рдПрд╡рдВ рдиреИрддрд┐рдХ рдореВрд▓реНрдпреЛрдВ рд╕реЗ рдЬрди рд╕рд╛рдзрд╛рд░рдг рдХреЛ рдЕрд╡рдЧрдд рдХрд░рд╛рдиреЗ рдХреА рдЬрд┐рдореНрдореЗрджрд╛рд░реА рднреА рд╡рд╣рди рдХрд░рдиреА рдкрдбрд╝рддреА рд╣реИред рдЕрдд: рд╕рдорд╛рдЪрд╛рд░-рдкрддреНрд░реЛрдВ рдХреЛ рдкрддреНрд░рдХрд╛рд░рд┐рддрд╛ рдХреЗ рдореВрд▓реНрдпреЛрдВ рдкрд░ рдЪрд▓рддреЗ рд╣реБрдП рд╕реНрд╡рд╕реНрде рд▓реЛрдХрддрдВрддреНрд░ рдХреЗ рдирд┐рд░реНрдорд╛рдг рдореЗрдВ рдЕрдкрдирд╛ рдпреЛрдЧрджрд╛рди рджреЗрддреЗ рд░рд╣рдирд╛ рд╣реЛрдЧрд╛ред

(рдЧ) рдХрдиреНрдпрд╛ рднреНрд░реВрдгрд╣рддреНрдпрд╛ : рдХрд╛рд░рдг рдФрд░ рдирд┐рд╡рд╛рд░рдг

рднрд╛рд░рддреАрдп рд╕рдорд╛рдЬ рдХрд╛ рдХрд▓рдВрдХ-рдХрдиреНрдпрд╛ рднреНрд░реВрдгрд╣рддреНрдпрд╛ рдЬреИрд╕реА рдмреБрд░рд╛рдИ рднрд╛рд░рддреАрдп рд╕рдорд╛рдЬ рдкрд░ рдХрд▓рдВрдХ рд╣реИред ‘рдпрддреНрд░ рдирд╛рд░реНрдпрд╕реНрддреБ рдкреВрдЬреНрдпрдиреНрддреЗ, рд░рдордиреНрддреЗ рддрддреНрд░ рджреЗрд╡рддрд╛’ рдЬреИрд╕реЗ рдЖрджрд░реНрд╢реЛрдВ рдХрд╛ рд╢рдВрдЦрдирд╛рдж рдХрд░рдиреЗ рд╡рд╛рд▓реЗ рднрд╛рд░рддреАрдп рдкрд░рд┐рд╡реЗрд╢ рдореЗрдВ рдХрдиреНрдпрд╛рдПрдБ рдЬрд┐рд╕ рд╕рдореНрдорд╛рди рд╡ рд╕реНрдиреЗрд╣ рдХреА рдЕрдзрд┐рдХрд╛рд░реА рд╣реИрдВ, рд╡рд╣ рдЙрдиреНрд╣реЗрдВ рдЖрдЬ рддрдХ рдкреНрд░рд╛рдкреНрдд рдирд╣реАрдВ рд╣реБрдЖ рд╣реИред рдЖрдЬ рдЬрдм рджреЗрд╢ рдЪрд╛рдБрдж рдкрд░ рдкрд╣реБрдБрдЪрдиреЗ рдХреЗ рд╕рд╛рде-рд╕рд╛рде рдордВрдЧрд▓ рдЧреНрд░рд╣ рдкрд░ рднреА рдЕрдкрдиреА рджрд╕реНрддрдХ рджреЗ рдЪреБрдХрд╛ рд╣реИ, рддрдм рдХрдиреНрдпрд╛ рднреНрд░реВрдгрд╣рддреНрдпрд╛ рдЬреИрд╕реЗ рдХреГрддреНрдп рдХреЛ рдЕрдВрдЬрд╛рдо рджреЗрдирд╛ рдпрд╣реА рджрд░реНрд╢рд╛рддрд╛ рд╣реИ рдХрд┐ рд╣рдо рдЖрдЬ рднреА рд▓рдХреАрд░ рдХреЗ рдлрдХреАрд░ рдмрдиреЗ рд╣реБрдП рд╣реИрдВ рдФрд░ рд╣рдо рдЖрдЬ рднреА рдкреБрддреНрд░ рдХреЛ рд╣реА рд╡рдВрд╢ рдЪрд▓рд╛рдиреЗ рдХреЗ рд▓рд┐рдП рдЖрд╡рд╢реНрдпрдХ рдорд╛рдирддреЗ рд╣реИрдВред

рдХрдиреНрдпрд╛рдУрдВ рдХреЗ рдкреНрд░рддрд┐ рд╕рдорд╛рдЬ рдХреА рджреВрд╖рд┐рдд рд╕реЛрдЪ-рдкреНрд░рддрд┐рд╡рд░реНрд╖ рди рдЬрд╛рдиреЗ рдХрд┐рддрдиреА рдмреЗрдЯрд┐рдпрд╛рдБ рдХреЛрдЦ рдореЗрдВ рд╣реА рдХрддреНрд▓ рдХрд░ рджреА рдЬрд╛рддреА рд╣реИрдВред рдЗрд╕ рдЬрдШрдиреНрдп рдХреГрддреНрдп рдХреЗ рдкреАрдЫреЗ рдмрд╣реБрдд рд╕реЗ рдХрд╛рд░рдг рд╣реИрдВ, рдЬрд┐рдирдореЗрдВ рдкреНрд░рдореБрдЦ рдХрд╛рд░рдг рд╣реИрдВ-рджрдХрд┐рдпрд╛рдиреВрд╕реА рдорд╛рдирд╕рд┐рдХрддрд╛, рдЕрд╢рд┐рдХреНрд╖рд╛, рдореВрдВрдЫ рдиреАрдЪреА рд╣реЛ рдЬрд╛рдиреЗ рдХрд╛ рднрдп, рдирд┐рд░реНрдзрдирддрд╛, рдПрдХ рд╣реА рдЬрдЧрд╣ рджреЛ рдпрд╛ рдЕрдзрд┐рдХ рдкреБрддреНрд░реЛрдВ рдХреА рдЕрднрд┐рд▓рд╛рд╖рд╛, рдХрд╛рдиреВрди рдХрд╛ рднрдп рди рд╣реЛрдирд╛ рдЖрджрд┐ред рдХрдИ рд░рд╛рдЬреНрдпреЛрдВ рдореЗрдВ рд╕реНрдерд┐рддрд┐ рдЗрддрдиреА рднрдпрд╛рд╡рд╣ рд╣реИ рдХрд┐ рдХрдиреНрдпрд╛ рдХреЗ рдЬрдиреНрдо рд▓реЗрдиреЗ рдХреЗ рдмрд╛рдж рдЙрд╕рдХреА рдЗрддрдиреА рдЙрдкреЗрдХреНрд╖рд╛ рдХреА рдЬрд╛рддреА рд╣реИ рдпрд╛ рдЗрддрдиреА рдкреНрд░рддрд╛рдбрд╝рдирд╛ рджреА рдЬрд╛рддреА рд╣реИ рдХрд┐ рд╡рд╣ рдХреБрдЫ рд╣реА рдШрдВрдЯреЛрдВ рдпрд╛ рджрд┐рдиреЛрдВ рдореЗрдВ рджрдо рддреЛрдбрд╝ рджреЗрддреА рд╣реИред

рдЗрд╕рдХреЗ рдХрд╛рд░рдг-рдХрдиреНрдпрд╛ рднреНрд░реВрдг рд╣рддреНрдпрд╛ рдХрд╛ рдПрдХ рдмрдбрд╝рд╛ рдХрд╛рд░рдг рджрд╣реЗрдЬ рдкреНрд░рдерд╛ рднреА рд╣реИред рд▓реЛрдЧ рд▓рдбрд╝рдХрд┐рдпреЛрдВ рдХреЛ рдкрд░рд╛рдпрд╛ рдзрди рд╕рдордЭрддреЗ рд╣реИрдВ, рдЙрдирдХреА рд╢рд╛рджреА рдХреЗ рд▓рд┐рдП рджрд╣реЗрдЬ рдХреА рд╡реНрдпрд╡рд╕реНрдерд╛ рдХрд░рдиреА рдкрдбрд╝рддреА рд╣реИред рджрд╣реЗрдЬ рдЬрдорд╛ рдХрд░рдиреЗ рдХреЗ рд▓рд┐рдП рдХрдИ рдкрд░рд┐рд╡рд╛рд░реЛрдВ рдХреЛ рдХрд░реНрдЬ рднреА рд▓реЗрдирд╛ рдкрдбрд╝рддрд╛ рд╣реИ, рдЗрд╕рд▓рд┐рдП рднрд╡рд┐рд╖реНрдп рдореЗрдВ рдЗрд╕ рдкреНрд░рдХрд╛рд░ рдХреА рд╕рдорд╕реНрдпрд╛рдУрдВ рд╕реЗ рдмрдЪрдиреЗ рдХреЗ рд▓рд┐рдП рд▓реЛрдЧ рдЧрд░реНрднрд╛рд╡рд╕реНрдерд╛ рдореЗрдВ рд╣реА рд▓рд┐рдВрдЧ рдкрд░реАрдХреНрд╖рдг рдХрд░рд╡рд╛рдХрд░ рдХрдиреНрдпрд╛ рднреНрд░реВрдг рд╣реЛрдиреЗ рдХреА рд╕реНрдерд┐рддрд┐ рдореЗрдВ рдЙрд╕рдХреА рд╣рддреНрдпрд╛ рдХрд░рд╡рд╛ рджреЗрддреЗ рд╣реИрдВред рд╣рдорд╛рд░реЗ рд╕рдорд╛рдЬ рдореЗрдВ рдорд╣рд┐рд▓рд╛рдУрдВ рд╕реЗ рдЕрдзрд┐рдХ рдкреБрд░реБрд╖реЛрдВ рдХреЛ рдорд╣рддреНрд╡ рджрд┐рдпрд╛ рдЬрд╛рддрд╛ рд╣реИред

рдЗрд╕ рдмреБрд░рд╛рдИ рдХреЛ рд░реЛрдХрдиреЗ рдХреЗ рдЙрдкрд╛рдп-рдЗрд╕рдХреЗ рдирд┐рд╡рд╛рд░рдг рдХреЗ рд▓рд┐рдП рднрд╛рд░рддреАрдпреЛрдВ рдХреЛ рдХрдиреНрдпрд╛рдУрдВ рдХреЗ рдкреНрд░рддрд┐ рдЕрдкрдиреА рджрдХрд┐рдпрд╛рдиреВрд╕реА рд╕реЛрдЪ рдХреЛ рдкреВрд░реА рддрд░рд╣ рдмрджрд▓рдирд╛ рд╣реЛрдЧрд╛ рдФрд░ рдмреЗрдЯрд╛-рдмреЗрдЯреА рдореЗрдВ рдЕрдВрддрд░ рдХрд░рдиреЗ рдХреА рднрд╛рд╡рдирд╛ рдХреЛ рдЫреЛрдбрд╝рдирд╛ рд╣реЛрдЧрд╛ред

рд╕рд░рдХрд╛рд░реА рдкреНрд░рдпрд╛рд╕- рднрд╛рд░рдд рдореЗрдВ рд╡рд░реНрд╖ 2004 рдореЗрдВ рдкреАрд╕реАрдкреАрдПрдирдбреАрдЯреА рдПрдХреНрдЯ рд▓рд╛рдЧреВ рдХрд░ рднреНрд░реВрдг рд╣рддреНрдпрд╛ рдХреЛ рдЕрдкрд░рд╛рдз рдШреЛрд╖рд┐рдд рдХрд░ рджрд┐рдпрд╛ рдЧрдпрд╛ред рдЗрд╕рдХреЗ рдмрд╛рдж рднреА рдХрдиреНрдпрд╛ рднреНрд░реВрдг рд╣рддреНрдпрд╛ рдкрд░ рдкреВрд░реНрдг рдирд┐рдпрдВрддреНрд░рдг рдирд╣реАрдВ рд╣реЛ рд╕рдХрд╛ред рд▓реЛрдЧ рдЪреЛрд░реА рдЫрд┐рдкреЗ рдкреИрд╕реЗ рдХреЗ рдмрд▓ рдкрд░ рдЗрд╕ рдХреБрдХреГрддреНрдп рдХреЛ рдЕрдВрдЬрд╛рдо рджреЗрддреЗ рд╣реИрдВред рдХрдиреНрдпрд╛ рднреНрд░реВрдг рд╣рддреНрдпрд╛ рдПрдХ рд╕рд╛рдорд╛рдЬрд┐рдХ рдЕрднрд┐рд╢рд╛рдк рд╣реИ рдФрд░ рдЗрд╕реЗ рд░реЛрдХрдиреЗ рдХреЗ рд▓рд┐рдП рд▓реЛрдЧреЛрдВ рдХреЛ рдЬрд╛рдЧрд░реВрдХ рдХрд░рдирд╛ рд╣реЛрдЧрд╛ред рдорд╣рд┐рд▓рд╛рдУрдВ рдХреЛ рдЖрддреНрдордирд┐рд░реНрднрд░ рдмрдирд╛рдХрд░ рд╣реА рдЗрд╕ рдХреГрддреНрдп рдХреЛ рд░реЛрдХрд╛ рдЬрд╛ рд╕рдХрддрд╛ рд╣реИред

рдЙрдкрд╕рдВрд╣рд╛рд░-рдХрд┐рд╕реА рднреА рджреЗрд╢ рдХреА рдкреНрд░рдЧрддрд┐ рддрдм рддрдХ рд╕рдВрднрд╡ рдирд╣реАрдВ рд╣реИ, рдЬрдм рддрдХ рд╡рд╣рд╛рдБ рдХреА рдорд╣рд┐рд▓рд╛рдУрдВ рдХреЛ рдкреНрд░рдЧрддрд┐ рдХреЗ рдкрд░реНрдпрд╛рдкреНрдд рдЕрд╡рд╕рд░ рди рдорд┐рд▓реЗрдВ ред рдЬрд┐рд╕ рджреЗрд╢ рдореЗрдВ рдорд╣рд┐рд▓рд╛рдУрдВ рдХрд╛ рдЕрднрд╛рд╡ рд╣реЛ, рдЙрд╕рдХреЗ рд╡рд┐рдХрд╛рд╕ рдХреА рдХрд▓реНрдкрдирд╛ рднрд▓рд╛ рдХреИрд╕реЗ рдХреА рдЬрд╛ рд╕рдХрддреА рд╣реИред рдХрдиреНрдпрд╛ рднреНрд░реВрдг рд╣рддреНрдпрд╛ рдкрд░ рдирд┐рдпрдВрддреНрд░рдг рдХрд░ рдЗрд╕реЗ рд╕рдорд╛рдкреНрдд рдХрд░рдиреЗ рдореЗрдВ рдорд╣рд┐рд▓рд╛рдУрдВ рдХреА рднреВрдорд┐рдХрд╛ рд╕рд░реНрд╡рд╛рдзрд┐рдХ рдорд╣рддреНрд╡рдкреВрд░реНрдг рд╣реЛ рд╕рдХрддреА рд╣реИ, рдХрд┐рдиреНрддреБ рд╕рд╛рдХреНрд╖рд░ рдорд╣рд┐рд▓рд╛ рд╣реА рдЕрдкрдиреЗ рдЕрдзрд┐рдХрд╛рд░реЛрдВ рдХреА рд░рдХреНрд╖рд╛ рдХрд░ рдкрд╛рдиреЗ рдореЗрдВ рд╕рдХреНрд╖рдо рд╣реЛрддреА рд╣реИ, рдЗрд╕рд▓рд┐рдП рд╣рдореЗрдВ рдорд╣рд┐рд▓рд╛ рд╢рд┐рдХреНрд╖рд╛ рдкрд░ рд╡рд┐рд╢реЗрд╖ рдзреНрдпрд╛рди рджреЗрдирд╛ рд╣реЛрдЧрд╛ред

рдЙрддреНрддрд░ 13. рд╕реЗрд╡рд╛ рдореЗрдВ,
рдкреНрд░рдзрд╛рдирд╛рдЪрд╛рд░реНрдп рдЬреА,
рд░рд╛рдЬрдХреАрдп рдорд╛рдзреНрдпрдорд┐рдХ рд╡рд┐рджреНрдпрд╛рд▓рдп,
рдиреЗрд╣рд░реВ рдорд╛рд░реНрдЧ,
рдирдИ рджрд┐рд▓реНрд▓реАред
рджрд┐рдирд╛рдВрдХ 8 рдордИ 20xx
рд╡рд┐рд╖рдп-рдЕрдЪреНрдЫреЗ рдкрд░рд┐рдгрд╛рдо рд╣реЗрддреБ рд╕реБрдЭрд╛рд╡-рдкрддреНрд░ред
рдорд╣реЛрджрдп,
рдирдореНрд░ рдирд┐рд╡реЗрджрди рд╣реИ рдХрд┐ рд╣рдорд╛рд░рд╛ рд╡рд┐рджреНрдпрд╛рд▓рдп рдЕрдкрдиреЗ рдХреНрд╖реЗрддреНрд░ рдХреЗ рд╡рд┐рд╢реЗрд╖ рд╡рд┐рджреНрдпрд╛рд▓рдпреЛрдВ рдореЗрдВ рдЧрд┐рдирд╛ рдЬрд╛рддрд╛ рд╣реИ, рд╢рд┐рдХреНрд╖рд╛ рдХрд╛ рдФрд░ рдЕрдзрд┐рдХ рд╡рд┐рд╕реНрддрд╛рд░ рдХрд░рдиреЗ рдХреЗ рд▓рд┐рдПред рд╣рдореЗрдВ рд╣рдорд╛рд░реЗ рд╡рд┐рджреНрдпрд╛рд▓рдп рдореЗрдВ рдкрд░рд┐рд╢реНрд░рдореА рдПрд╡рдВ рдпреЛрдЧреНрдп рд╢рд┐рдХреНрд╖рдХреЛрдВ рдХреЛ рдирд┐рдпреБрдХреНрдд рдХрд░рдирд╛ рдЪрд╛рд╣рд┐рдП рдЬрд┐рд╕рд╕реЗ рд╢рд┐рдХреНрд╖рд╛ рд╡реНрдпрд╡рд╕реНрдерд╛ рдФрд░ рдЕрдЪреНрдЫреА, рд╕реБрд╡реНрдпрд╡рд╕реНрдерд┐рдд рдПрд╡рдВ рдирд┐рдпрдорд┐рдд рд░реВрдк рд╕реЗ рд╣реЛ рд╕рдХреЗред рдЬрд┐рд╕рд╕реЗ рдХрдХреНрд╖рд╛ рджрд╕рд╡реАрдВ рдПрд╡рдВ рдмрд╛рд░рд╣рд╡реАрдВ рдХреЗ рдкрд░рд┐рдгрд╛рдо рдЕрдЪреНрдЫреЗ рдЖ рд╕рдХреЗрдВрдЧреЗ рддрдерд╛ рд╢рд┐рдХреНрд╖рдХреЛрдВ рджреНрд╡рд╛рд░рд╛ рдЙрдиреНрд╣реЗрдВ рдирдпрд╛ рдорд╛рд░реНрдЧрджрд░реНрд╢рди рдкреНрд░рд╛рдкреНрдд рд╣реЛрдЧрд╛ рдЬрд┐рд╕рдХреЗ рдХрд╛рд░рдг рд╣рдорд╛рд░реЗ рд╡рд┐рджреНрдпрд╛рд▓рдп рдХреЛ рдЦреНрдпрд╛рддрд┐ рдкреНрд░рд╛рдкреНрдд рд╣реЛрдЧреАред рд╣рдорд╛рд░рд╛ рдЙрджреНрджреЗрд╢реНрдп рд╡рд┐рджреНрдпрд╛рд░реНрдерд┐рдпреЛрдВ рдХреЛ рдЙрдЪрд┐рдд рд╢рд┐рдХреНрд╖рд╛ рдореБрд╣реИрдпрд╛ рдХрд░рд╡рд╛рдирд╛ рд╣реИред
рдзрдиреНрдпрд╡рд╛рдж!
рдЖрдкрдХрд╛ рдЖрдЬреНрдЮрд╛рдХрд╛рд░реА рд╢рд┐рд╖реНрдп
рд╡рд┐рдиреЛрдж рд╢рд░реНрдорд╛

рдЕрдерд╡рд╛

рдкрд░реАрдХреНрд╖рд╛ рднрд╡рди,
рдлрд░реАрджрд╛рдмрд╛рджред
рджрд┐рдирд╛рдВрдХ : 19 рдордИ, 20xx
рд╕реЗрд╡рд╛ рдореЗрдВ,
рдорд╛рдирдиреАрдп рд╕рд╛рдВрд╕рдж рдорд╣реЛрджрдп,
рдлрд░реАрджрд╛рдмрд╛рдж ред
рд╡рд┐рд╖рдп : рдХреНрд╖реЗрддреНрд░ рдореЗрдВ рдирдпрд╛ рдкреБрд╕реНрддрдХрд╛рд▓рдп рдЦреЛрд▓рдиреЗ рд╣реЗрддреБред
рдорд╣реЛрджрдп,
рдирд┐рд╡реЗрджрди рдпрд╣ рд╣реИ рдХрд┐ рдореИрдВ рд╕реЗрдХреНрдЯрд░-20 рд╕реЗ рд╕реЗрдХреНрдЯрд░-65 рддрдХ рдмрд╣реБрдд рдЖрдмрд╛рджреА рдмрд╕ рдЪреБрдХреА рд╣реИред рдпрд╣рд╛рдБ рдХреА рдЬрдирд╕рдВрдЦреНрдпрд╛ рдкрд┐рдЫрд▓реЗ рдкрд╛рдБрдЪ рд╕рд╛рд▓реЛрдВ рдХреА рддреБрд▓рдирд╛ рдореЗрдВ рддреАрди рдЧреБрдирд╛ рдЕрдзрд┐рдХ рд╣реЛ рдЪреБрдХреА рд╣реИ, рдХрд┐рдиреНрддреБ рдЗрд╕ рдХреНрд╖реЗрддреНрд░ рдореЗрдВ рдкреБрд╕реНрддрдХрд╛рд▓рдп рдХреА рд╡реНрдпрд╡рд╕реНрдерд╛ рдЕрднреА рддрдХ рдирд╣реАрдВ рд╣реИред рдкреБрд╕реНрддрдХрд╛рд▓рдп рд╕реЗ рд╕рдВрдмрдВрдзрд┐рдд рдХрд┐рд╕реА рднреА рдХрд╛рдо рдХреЗ рд▓рд┐рдП рд▓реЛрдЧреЛрдВ рдХреЛ рдпрд╣рд╛рдБ рд╕реЗ рдмрд╣реБрдд рджреВрд░ рд╕реЗрдХреНрдЯрд░-14 рдореЗрдВ рдЬрд╛рдирд╛ рдкрдбрд╝рддрд╛ рд╣реИ, рдЬрд┐рд╕рд╕реЗ рдмрд╣реБрдд рдкрд░реЗрд╢рд╛рдиреА рд╣реЛрддреА рд╣реИред рд╡рд┐рд╢реЗрд╖рдХрд░ рдмреВрдврд╝реЛрдВ рдФрд░ рдорд╣рд┐рд▓рд╛рдУрдВ рдХреЛ рдмрд╣реБрдд рдХрд╖реНрдЯ рдЙрдард╛рдирд╛ рдкрдбрд╝рддрд╛ рд╣реИред рд╕рд┐рд░реНрдл рд╡рд┐рджреНрдпрд╛рд░реНрдереА рд╣реА рдЗрд╕рдХрд╛ рд▓рд╛рдн рд▓реЗ рдкрд╛рддреЗ рд╣реИрдВред

рдореЗрд░рд╛ рдЖрдкрд╕реЗ рд╡рд┐рдирдореНрд░ рдЕрдиреБрд░реЛрдз рд╣реИ рдХрд┐ рдЗрд╕ рдХреНрд╖реЗрддреНрд░ рдХреА рдЖрд╡рд╢реНрдпрдХрддрд╛ рдФрд░ рдкрд░реЗрд╢рд╛рдиреА рдХреЛ рджреЗрдЦрддреЗ рд╣реБрдП рдЗрд╕ рдХреНрд╖реЗрддреНрд░ рдореЗрдВ рд╢реАрдШреНрд░ рд╣реА рдПрдХ рдкреБрд╕реНрддрдХрд╛рд▓рдп рдЦреБрд▓рд╡рд╛рдиреЗ рдХреА рд╡реНрдпрд╡рд╕реНрдерд╛ рдХрд░реЗрдВ, рдЬрд┐рд╕рд╕реЗ рдпрд╣рд╛рдБ рдХреЗ рдирд╛рдЧрд░рд┐рдХреЛрдВ рдХреЛ рд╣реЛрдиреЗ рд╡рд╛рд▓реА рдкрдарди-рдкрд╛рдарди рдХреА рдкрд░реЗрд╢рд╛рдирд┐рдпреЛрдВ рд╕реЗ рдЫреБрдЯрдХрд╛рд░рд╛ рдорд┐рд▓ рд╕рдХреЗред
рдзрдиреНрдпрд╡рд╛рдж!
рднрд╡рджреАрдп
рдХ. рдЦ. рдЧ.

рдЙрддреНрддрд░ 14.

CBSE Sample Papers for Class 10 Hindi A Set 3 1

рдЕрдерд╡рд╛

рд╡рд┐рджреНрдпрд╛рд▓рдп рдХреЗ рд╡рд╛рд░реНрд╖рд┐рдХреЛрддреНрд╕рд╡ рдкрд░ рд╣рд╕реНрддрдХрд▓рд╛ рдкреНрд░рджрд░реНрд╢рдиреА

CBSE Sample Papers for Class 10 Hindi A Set 3 2

We hope the CBSE Sample Papers for Class 10 Hindi A Set 3 help you. If you have any query regarding CBSE Sample Papers for Class 10 Hindi A Set 3, drop a comment below and we will get back to you at the earliest.

CBSE Sample Papers for Class 10 Hindi A Set 3 Read More ┬╗

error: Content is protected !!